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Abstract

This is a brief abstract in the requirements of Universidad Complutense de Madrid. For a more
comprenhensive summary jump to Introduction.

In [A’C10] N. A’Campo introduced the notion of pure tête-à-tête graph in order to model
monodromies of plane curves. These are metric ribbon graphs without univalent vertices that
satisfy a special property. If one sees the ribbon graph Γ as a strong deformation retract of a
surface Σ with boundary, the tête-à-tête property says that starting at any point p and walking a
distance of π in any direction and always turning right at vertices, gets you to the same point. This
property defines an element in the mapping class group MCG+(Σ, ∂Σ) which is freely periodic,
and is called the tête-à-tête twist associated with Γ.

This work starts with the preliminary theory necessary to understand the rest of the work. All
the results that are gathered in this part are known. It consists of the first five chapters of the
work.

After this, we introduce all the definitions that were originally given by A’Campo. We show
that the tête-à-tête property induces a periodic automorphism on the ribbon graph Γ and a freely
periodic automorphism on its thickening. We prove the first main theorem of the text which
characterizes the mapping classes that contain a tête-à-tête twist and obtain some corollaries from
it. This result is contained in the joint work [FPP17] co-authored with J. Fernández de Bobadilla
and M. Pe Pereira. This first realization result (which previously appeared in [FPP17]) says

Theorem A. The set of mapping classes in MCG+(Σ, ∂Σ) that can be realized by a
pure tête-à-tête graph (in the sense of A’Campo) is precisely the set of freely periodic
mapping classes with strictly positive fractional Dehn twists.

This improves the main result of [Gra15] who proves the same result but allowing univalent
vertices whereas we restrict ourselves to the original set of tête-à-tête graphs defined by A’Campo.

After this we introduce general tête-à-tête graphs. These are metric ribbon graphs with some
special subset of univalent vertices. We prove that these are enough to model all periodic mapping
classes of a given oriented surface with boundary. This part is contained in [Por17].

Tête-à-tête graphs only model automorphisms whose mapping classes are periodic in MCG(Σ)
and these do not model monodromies of plane branches with at least two Puiseux pairs. With this
motivation, we introduce the notion of mixed tête-à-tête graph which appeared first in [FPP17].
These are metric ribbon graphs endowed with a decreasing filtration Γ• and a set of locally constant
functions δi : Γi → R≥0. They satisfy a mixed tête-à-tête property which generalizes the tête-à-
tête property. We associate a pseudo-periodic mapping class in MCG+(Σ, ∂Σ) to a given mixed
tête-à-tête graph: the mixed tête-à-tête twist.

Then we prove the main result of the work (Theorem 10.7) which originally appeared in a joint
work with B. Sigurðson [PS17]. It characterizes the set of mapping classes that can be realized by
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mixed tête-à-tête twists.

Theorem B. Let φ : Σ→ Σ be an automorphism with fixes the boundary. Then there
exists a mixed tête-à-tête graph in Σ inducing its mapping class in MCG+(Σ, ∂Σ) if
and only if some power of φ is a composition of right handed Dehn twists around
disjoint simple closed curves including all boundary components.

As a corollary of this theorem and a result in [NP07] we get

Theorem C. Mixed tête-à-tête twists are precisely the monodromies associated with
reduced function germs defined on isolated surface singularities.

This generalizes a previous result in [FPP17] in which we proved that mixed tête-à-tête twists
model monodromies of plane branches.

The mapping torus of a pseudo-periodic surface automorphism is a graph manifold. Conversely,
a horizontal surface of a fiber-oriented graph manifold has a pseudo-periodic monodromy induced
on it. Hence, it is a natural problem to assign a graph manifold and a horizontal surface to
each mixed tête-à-tête graph and, whenever possible, assign a mixed tête-à-tête graph to a given
horizontal surface in a graph manifold. In this part we provide algorithms producing a graph
manifold and a fibration over S1 from a mixed tête-à-tête graph and vice versa. In particular, this
provides a direct and effective way to check if two mixed tête-à-tête graphs represent conjugate
mapping classes in MCG+(Σ, ∂Σ).

The work ends with three appendices that are additional content and are not strictly necessary
to understand the previous content.
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Resumen

Este es un breve resumen en cumplimiento de la normativa de la Universidad Complutense de
Madrid. Para una introducción más exhaustiva saltar a Introduction.

En [A’C10] N. A’Campo presentó la noción de tête-à-tête puro con el objetivo de modelar las
monodromías de curvas planas. Estos son grafos ribbon sin vértices univalents que satisfacen una
propiedad especial. Si piensas en el grafo ribbon Γ como en un retracto de la superficie con borde
Σ, la propiedad tête-à-tête te dice que empezando en cualquier punto p y caminando una distancia
de π en cualquier dirección y siempre girando a la derecha en cualquier vértice, llegas al mismo
punto. Esta propiedad define un elemento del mapping class group MCG+(Σ, ∂Σ) que es periódico
a frontera libre. Este elemento es el tête-à-tête twist asociado con Γ.

El trabajo empieza con la teoría preliminar necesaria para entender el resto de contenidos.
Todos los resultados de esta parte son conocidos. Consiste de los primeros cinco capítulos.

Después, presentamos las definiciones originales de grafos tête-à-tête de A’Campo. Mostramos
que la propiedad tête-à-tête induce un automorfismo periódico del grafo ribbon Γ y un automor-
fismo periódico a frontera libre en el engordamiento del grafo Σ. Demostramos el primero de los
resultados principales del trabajo el cual caracteriza las mapping classes que contienen algún repre-
sentante tête-à-tête . Este resultado está contenido en [FPP17], trabajo conjunto con J. Fernández
de Bobadilla and M. Pe Pereira. El enunciado es

Theorem A. El conjunto de mapping classes en MCG+(Σ, ∂Σ) que son inducidas
por grafos tête-à-tête (en el sentido original de A’Campo) es precisamente el conjunto
de mapping classes periódicas a frontera libre que tienen coeficientes fracionales de
Dehn twist estrictamente positivos.

A continuación presentamos los grafos tête-à-tête generales. Estos son grafos ribbon métri-
cos con un conjunto especial de vértices univalents. Satisfacen una propiedad tête-à-tête y de-
mostramos que son suficientes para modelar todas las mapping classes periódicas de una superficie
orientada con borde. Esta parte está contenida en [Por17].

Con los grafos definidos hasta el momento tan solo podemos modelar automorfismos que son
periódicos vistos como mapping classes en MCG(Σ). [FPP17]. Esto no es suficiente para modelar
monodromías de curva plana con más de un par de Puiseux. Con esta motivación definimos los
grafos tête-à-tête mixtos. Son grafos ribbon con una métrica y una filtración decreciente Γ• junto
con una colección de funciones δi : Γi → R≥0 localmente constantes. Satisfacen una propiedad tête-
à-tête mixta que generaliza la propiedad tête-à-tête y definen una mapping class pseudo-periódica.

Demostramos un teorema de realización sobre grafos mixtos caracterizando qué automorfismos
pseudo-periódicos son capaces de modelar.

Theorem B. Sea φ : Σ → Σ un automorfismo que fija el borde. Entonces existe
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un grafo tête-à-tête mixto in Σ que induce su mapping class en MCG+(Σ, ∂Σ) si y
solo si alguna potencia suficientemente grande de φ es una composición de twist de
Dehn hacia la derecha a lo largo de curvas cerradas disjuntas que incluyen todos las
componentes de borde.

Aplicando el teorema previo junto con un resultado en [NP07], probamos el siguiente corolario:

Theorem C. Los automorfismos tête-à-tête mixtos son precisamente las monodromías
asociadas a gérmenes reducidos de función holomorfa definidos en singularidades de
superficie aisladas.

Este teorema mejora un teorema previo del trabajo conjunto [FPP17] donde demostramos que
los automorfismos tête-à-tête mixtos modelan monodromías de singularidades irreducibles de curva
plana.

Observamos que el mapping torus de un automorfismo pseudo-periódico es una variedad de
grafo. Por otro lado, una superficie horizontal en una variedad de graph con fibras orientadas tiene
una monodromía pseudo-periódica asociada. En los últimos dos capítulos de la tesis detallamos
algoritmos que llevan de un mundo a otro partiendo de información combinatoria en ambos lados.

El trabajo termina con tres apéndices que son contenido adicional y no necesarios para entender
lo anterior. Hay un tercer apéndice consistente de una lista exhaustiva de ejemplos ilustrando los
principales resultados y algoritmos del trabajo.
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Introduction

In [A’C10] N. A’Campo introduced the notion of tête-à-tête graph in order to model monodromies
of plane curves. These are metric ribbon graphs without univalent vertices that satisfy a special
property. If one sees the ribbon graph Γ as a strong deformation retract of a surface Σ with
boundary, the tête-à-tête property says that starting at any point p and walking a distance of π
in any direction and always turning right at vertices, gets you to the same point. These particular
paths are called safe walks, in A’Campo’s words:

“If we think of the graph as streets with intersections on the surface, we can image
a safe walk as a walk staying always at the sidewalk of the street and making only right
turns. So, in New York, a safe walk goes around the block by right turns only, and
hence, in the same direction as the cars do. In Tokio, a safe walk is even safer, since
it is opposite to the direction of the car traffic.”

The property that the two safe walks starting at a given point have the same end, defines
an element in the mapping class group MCG+(Σ, ∂Σ) which is freely periodic, and is called the
tête-à-tête twist associated with Γ. However, the monodromy of a irreducible plane branch with at
least two Puiseux pairs is not freely periodic as A’Campo originally proved in [A’C73]. The goal
of modeling monodromies of plane curves was not successfully achieved in that work.

In [Gra15], C. Graf dropped the singularity theory point of view and took the subject from a
low-dimensional topology perspective. He proved that by allowing univalent vertices in tête-à-tête
graphs, one is able to model all freely periodic mapping classes of MCG+(Σ, ∂Σ) with positive
fractional Dehn twist coefficients. He also left several questions opened as for example providing a
definition to model periodic automorphisms that permute all boundary components of a surface.

This work is an organized and somehow, extended exposition of three preprints produced
during the realization of the author’s PhD. In order of appearance: [FPP17] (joint work with J.
Fernández de Bobadilla and M. Pe Pereira), [Por17] and [PS17] (joint work with B. Sigurðsson).

We address the first issue (which we consider the most important one) of modeling monodromies
of plane branches. We give a definition of mixed tête-à-tête graph (originally in [FPP17]) and prove
that one can model monodromies of reduced holomorphic function germs on isolated complex
singularities (originally in [PS17]). Which is the main result of the paper and is beyond the
original scope of A’Campo. This result improves a previous result in [FPP17] which showed that
mixed tête-à-tête graphs model monodromies of plane branches.

On the way to prove this main result, we address as well some of the questions left open by
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C. Graf. First we prove a stronger version of his main result by using the original definition of
tête-à-tête given by A’Campo and not allowing univalent vertices (this result originally appeared
in [FPP17]). We introduce the notion of general tête-à-tête graph and prove that it is enough to
model all orientation preserving periodic automorphisms of surfaces (originally in [Por17]).

We also relate the work with the existent literature on the topic of pseudo-periodic mapping
classes as well as the closely related subject of graph manifolds.

This work is meant to be an introductory text to the theory of tête-à-tête graphs. It is (nearly)
self-contained in the following sense: a reader which had a similar experience as the author had at
the beginning of his PhD, should be able to easily follow the arguments by, only maybe, looking
at references occasionally.

Below, we summarize the content of the text chapter by chapter. We highlight the main results
and how they relate to the existent literature on the topic. We also specify in which of the three
previous pre-prints each of these results appeared.

Part I
Chapters 1 and 2 are the preliminaries for Part II and Chapters 3 and 4 for Part III. It also serves
to fix a lot of notation and conventions. All the results that are gathered in this part are known.
However, to make the text as self contained as possible we review this theory a detailed manner.
Sometimes we prove some basic (but key) results for which we could not find a reference, and
sometimes we re-write part of a known theory in a language that best fits our purposes. In any
case, we take no priority at all in this part. It is divided in five chapters. The content of this part
appeared, up to minor modifications and corrections, on preprints during the realization of this
thesis as follows: Chapters 1 and 2 were contained in [FPP17] (co-authored with J. Fernández de
Bobadilla and M. Pe Pereira); Chapter 3 appeared in [Por17]; the first part of Chapter 4 appeared
in [Por17] and the second part in [PS17] (co-authored with B. Sigurðsson). Next, we summarize
the contents of these chapters and the dependency of further chapters on these.

Chapter 1. It contains notions, definitions and conventions about ribbon graphs and their thick-
enings. This content is not used until Chapter 6 and from that chapter on, it is used in all chapters
and appendices.

Chapter 2. Here we review the necessary theory about the mapping class group of a surface
with non-empty boundary in four sections. First we focus on mapping classes in the mapping class
group where isotopies are allowed to change the action on the boundary. After that, we introduce
the basic blocks of which the mapping classes are built: Dehn twists. Then we treat the boundary-
fixed mapping class group and study those mapping classes that are freely periodic. In this section,
we introduce the important concept of fractional Dehn twist coefficient. In the last section we state
the Nielsen-Thurston classification of automorphisms of surfaces and study those mapping classes
that only have periodic pieces in their decomposition: pseudo-periodic mapping classes. For this,
we state some more results on automorphisms of annuli. In particular, we introduce the screw
number of an pseudo-periodic automorphism at an orbit of annuli. In the first three sections we
mainly follow [FM12] and in the last section we mainly follow [MM11]. The theory of this chapter
is necessary for Chapters 7 and 9.

Chapter 3. In this chapter we do a quick study of Seifert manifolds. We fix conventions and state
the main properties that we use. In the end of the chapter we briefly introduce graph manifolds
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and a combinatorial way of enconding their topology: plumbing graphs. The main result of this
chapter is Lemma 3.13 that relates a bamboo of a plumbing graph with a gluing of two Seifert
pieces of a graph manifold. This is a key tool for Part III. In this chapter we follow different
references [Neu81, Ped09, JN83, NR78, Hat07] keeping our own language.

Chapter 4. Here we work a thorough study of horizontal open books of closed graph manifolds.
The main result of this chapter is the classification given in Proposition 4.21 which depends on a
previous result in the weaker context of Seifert manifolds with boundary (Lemma 4.7). We end this
chapter with a section devoted to give recipes that extract the conjugacy and isotopy invariants
of a pseudo-periodic automorphism from the combinatorial information that encodes a horizontal
open book. This is the important content of the chapter that is used in Part III. The content of
this chapter (with varying conventions) can be extracted from [Hat07, NP07, LP05, EN85].

Chapter 5. In this section we briefly review the concepts of singularity theory that appear
somewhere in the text. We sketch some constructions and provide with references for the main
results.

Part II
The second part of the text is the main part of the document. We introduce all the definitions
that were originally given by A’Campo. We introduce the notion of mixed tête-à-tête graph and
we prove the main results of the work, which are realization theorems for each of the different types
of tête-à-tête graphs. We also obtain some interesting corollaries. It is divided in five chapters.

Chapter 6. This is an introduction to tête-à-tête graphs. We present the original definitions and
ideas by A’Campo [A’C10] of pure tête-à-tête graph and relative tête-à-tête graph. We show that
the tête-à-tête property induces a periodic homeomorphism on the graph Γ. We also review the
blow-up operation (also an idea of A’Campo) that produces relative tête-à-tête graphs from pure
tête-à-tête graphs. The contents of this chapter appeared previously in [FPP17].

Chapter 7. We start the chapter by introducing the notion of signed tête-à-tête graph which was
previously introduced by C. Graf in [Gra15], but we keep the restriction of not allowing univalent
vertices. We show how a signed tête-à-tête graph defines a mapping class in MCG+(Σ, ∂Σ) which
is called tête-à-tête twist. We prove the first main theorem of the text which characterizes the
mapping classes that contain a tête-à-tête twist and obtain some corollaries from it. The results
of the first two sections of this chapter are contained in the joint work [FPP17] co-authored with
J. Fernández de Bobadilla and M. Pe Pereira. The last section of the chapter about general tête-
à-tête graphs is contained in [Por17]. The main result (which previously appeared in [FPP17])
says

Theorem A. The set of mapping classes in MCG+(Σ, ∂Σ) that can be realized by a
signed tête-à-tête graph is precisely the set of freely periodic mapping classes.

The set of mapping classes in MCG+(Σ, ∂Σ) that can be realized by a pure tête-
à-tête graph (in the sense of A’Campo) is precisely the set of freely periodic mapping
classes with strictly positive fractional Dehn twists.
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This improves the main result of [Gra15] by not allowing univalent vertices. Using relative
tête-à-tête graphs we can change ∂Σ by a non-empty subset of it in the previous theorem. These
results correspond with Theorem 7.18, Corollary 7.19 and Theorem 7.30 in the text.

We observe that one can define a truly periodic automorphism from a tête-à-tête graph as well.
And obtain as a corollary of the theorem above that any truly periodic automorphism of a surface
that leaves at least one boundary component invariant can be realized by a relative tête-à-tête
graph. This is contained in Theorem 7.33.

To complete the theory, we introduce general tête-à-tête graphs which are ribbon graphs in
which we allow some special set of univalent vertices endowed with a permutation. An analogous
general tête-à-tête property is defined and a truly periodic automorphism is associated with each
general tête-à-tête graph. We prove Theorem 7.40 (which previously appeared in [Por17]) and
which says:

Theorem B. The set of automorphisms that can be realized by a general tête-à-tête
graph is the set of truly periodic automorphisms.

Chapter 8. We introduce the notion of mixed tête-à-tête graph which appeared first in [FPP17].
These are metric ribbon graphs endowed with a decreasing filtration Γ• and a set of locally constant
functions δi : Γi → R≥0. They satisfy a mixed tête-à-tête property which generalizes the tête-à-tête
property.

Chapter 9. In this section we associate a pseudo-periodic mapping class in MCG+(Σ, ∂Σ) to a
given mixed tête-à-tête graph: the mixed tête-à-tête twist. We obtain the screw numbers from the
combinatorial data of the mixed tête-à-tête graph. We prove that a mixed tête-à-tête twist has
positive fractional Dehn twists and negative screw numbers, i.e., some power of a mixed tête-à-tête
twist is a composition of (powers of) right-handed Dehn twists around disjoint simple closed curves.

Chapter 10. This chapter contains the main result of the work (Theorem 10.7) which originally
appeared in a joint work with B. Sigurðson [PS17]. It characterizes the set of mapping classes that
can be realized by mixed tête-à-tête twists.

Theorem C. Let φ : Σ→ Σ be an automorphism with fixes the boundary. Then there
exists a mixed tête-à-tête graph in Σ inducing its mapping class in MCG+(Σ, ∂Σ) if
and only if some power of φ is a composition of right handed Dehn twists around
disjoint simple closed curves including all boundary components.

A reduced holomorphic function germ on an isolated surface singularity has an associated Mil-
nor fibration with a monodromy which fixes the boundary. It is known that this monodromy is
pseudo-periodic and a power of it is a composition of right-handed Dehn twists around disjoint
simple closed curves, which include all the boundary curves. It follows that the Milnor fiber asso-
ciated with such a function germ contains a mixed tête-à-tête graph which defines the monodromy.
Conversely, a result by Neumann and Pichon [NP07] says that any such a surface automorphism
is realized as the monodromy associated with a function germ. Hence we get the corollary (which
also appeared in [PS17])
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Theorem D. Mixed tête-à-tête twists are precisely the monodromies associated with
reduced function germs defined on isolated surface singularities.

It is worth noting that this result improves a previous result in the joint work [FPP17] where
we proved that mixed tête-à-tête graphs model monodromies of plane branches (which was the
expected scoped of the definition). To be able to refine the proof in that work in order to prove
Theorem C., one has to deal with certain non-trivial combinatorics problems. This process is
carried out with detail in this chapter.

Part III
The mapping torus of a pseudo-periodic surface automorphism is a graph manifold. Conversely, a
horizontal surface of a fiber-oriented graph manifold has a pseudo-periodic monodromy induced on
it. Hence, it is a natural problem to assign a graph manifold and a horizontal surface to each mixed
tête-à-tête graph and, whenever possible, assign a mixed tête-à-tête graph to a given horizontal
surface in a graph manifold. In this part we provide algorithms producing a graph manifold and
a fibration over S1 from a mixed tête-à-tête graph and vice versa. In particular, this provides
a direct and effective way to check if two mixed tête-à-tête graphs represent conjugate mapping
classes in MCG+(Σ, ∂Σ).

It is divided in two chapters. Chapter 11 solves the problem for the weaker case of horizontal
surfaces in Seifert manifolds with boundary and Chapter 12 analyzes the case of horizontal open
books in closed graph manifolds. We use the theory developed in Chapters 3 and 4.

Appendices
The work ends with three appendices that are additional content and are not strictly necessary to
understand the previous content. Appendices A and B appeared in a early version of [FPP17] but
were subsequently removed.

Appendix A. We take the notion of regular filtered metric ribbon graph which is a restricted
type of graph which in particular includes the mixed tête-à-tête graphs of plane branches. In this
appendix we study which δ• functions can endow a given regular filtered metric ribbon graph with
the structure of mixed tête-à-tête graph.

Appendix B. We follow the construction of the monodromy of an irreducible plane curve sin-
gularity given in [A’C73] to, algorithmically, produce a mixed tête-à-tête graph that models that
monodromy. More concretely, we give a recipe for the mixed tête-à-tête graph from the character-
istic Puiseux pairs of the singularity.

Appendix C. We end the work with a collection of detailed examples that are cited throughout
the text. They illustrate the main theorems and constructions as well as the algorithms of the last
part.
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Part I

Preliminary theory





Chapter 1

Ribbon graphs

This first chapter fixes some notation, conventions and basic constructions about ribbon graphs
that are used throughout the text.

Definition 1.1. A graph Γ is a 1-dimensional finite CW-complex.

We denote by v(Γ) the 0-skeleton and refer to it as the set of vertices. We denote by e(Γ)
the disjoint union of the 1-cells and refer to it as the set of edges. With this definition we allow
loops, which correspond to 1-cells whose attaching map is constant, and we also allow several edges
connecting two vertices. For a vertex v we denote by e(v) the set of edges adjacent to v, where an
edge e appears twice in case it is a loop joining v with v. The valency of a vertex is the cardinality
of e(v) (a loop counts twice). Unless we state the contrary we assume that there are no vertices of
valency 1.

We consider graphs that appear as regular retracts of oriented surfaces Σ with non-empty
boundary.

Definition 1.2. A graph Γ embedded in a surface Σ is a regular retract or a spine if there exists
a strong deformation retraction r : Σ× [0, 1]→ Σ onto Γ such that r|∂Σ×[0,1) is a homeomorphism
onto Σ\Γ and r(·, 1)|∂Σ : Σ→ Γ is locally injective. We say that r is a regular retraction and that
Σ is a regular neighborhood or a regular thickening of Γ.

A regular thickening of a graph Γ is codified by a cyclic order of e(v) for every v ∈ v(Γ) in the
following way. Assume that for every v ∈ v(Γ) the set e(v) is cyclically ordered:

e(v) = {e1, ..., ek}.

For each vertex v ∈ v(Γ) we draw in R2 a star-shaped graph consisting of v and as many
arms as elements in e(v) = {e1, . . . , ek} which are drawn counterclockwise. Now, we thicken it
constructing a star-shaped planar piece as in Figure 1.4, which comes equipped with a unique
orientation if the valency of the vertex is at least 3. In the case of valency-2-vertices choose one of
the possible orientations.
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Chapter 1 Ribbon graphs

1.3. Whenever there is an edge e joining vertices vi and vj , we glue the corresponding thickened
arms of the star-shaped pieces in the way that produces an oriented surface, and identifying points
of the corresponding edges. If there is at least a vertex in the graph with valency at least 3, this
procedure gives a unique orientation in the surface. If there are only valency-2-vertices, then the
surface is an oriented annulus, and the orientation depends on the choice of orientations of the
2-star shaped pieces. We choose one of the possible orientations.

In this way we obtain a connected oriented surface Σ with boundary and with the graph Γ
embedded in it. We say Σ is the thickening of Γ and we write (Σ,Γ).

Reciprocally, every connected oriented surface with finite topology and non-empty boundary
has a spine Γ (i.e. an embedded graph in Σ \ ∂Σ that is a regular retract of Σ) and certain
cyclic orders in the subsets of edges adjacent to every vertex such that Σ is homeomorphic to the
thickening of Γ.

In this way, we can model the topology of every connected oriented surface with non-empty
boundary except the disk.

v e1

e2

e3

e4

Figure 1.4: Star-shaped piece for some vertex v of valency 4.

Definition 1.5. A ribbon graph is a graph Γ equipped with a cyclic order of e(v) for each v ∈ v(Γ).
The surface Σ constructed above is the thickening of Γ. And Γ is a spine of Σ.

Example 1.6. Let Kp,q be the bipartite complete graph (p, q). The set of vertices is the union of
two sets A and B of p and q vertices respectively. The edges are exactly all the possible non-ordered
pairs of points one in A and one in B.

Now we fix cyclic orders in A and B. These give cyclic orders in the sets of edges adjacent to
vertices in B and A respectively. One can check that the thickening surface has as many boundary
components as gcd(p, q) and genus equal to 1

2 [(p− 1)(q − 1)− gcd(p, q) + 1].
In Figure 1.7 we can see the example of K2,3.

Following A’Campo [A’C10], we introduce a generalization of the notion of spine of a surface
with boundary Σ, which treats in a special way a certain union of boundary components. Let us
start by the corresponding graph theoretic notion.

Let (Γ, A) be a pair formed by a graph Γ and an oriented subgraph A, such that each of its
connected components Ai is homeomorphic to the oriented circle S1 . Let v be any vertex of Γ.
If v ∈ A, since the connected components of A are circles, there are at most two elements in e(v)
that belong to A, and in this case they belong to the same component Ai. We say that a cyclic
order of e(v) is compatible with the orientation of A if the elements of e(v) can be enumerated as
e(v) = {e1, ..., ek} in such a way that

1. ei < ei+1 and ek < e1,

4
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1
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1
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3
1

2
3

1
2
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1

2

1

2

1

2

Figure 1.7: Thickening of the graph K2,3 in three steps. First we have a planar projection of K2,3 where
the two subsets of vertices are vertically ordered in two parallel lines. Then we thicken a neighborhood of
every vertex and finally we glue the pieces. The resulting surface is homeomorphic to the once-punctured
torus.

2. the edges belonging to Ai are e1 and ek,
3. if we consider a small interval in Ai around v and we parametrize it in the direction induced

by the orientation of Ai, then we pass first by e1 and after by ek.

Definition 1.8. Let (Γ, A) be a pair formed by a graph Γ and a oriented subgraph A as above.
The pair is a relative ribbon graph if for any vertex v the set of incident edges e(v) is endowed
with a cyclic order compatible with the orientation of A.

We define the thickening surface of a relative ribbon graph (Γ, A) as follows.

1.9. We consider star shaped pieces as in Figure 1.4 for every vertex in Γ\A. For every component
Ai we consider a partial thickening of Ai with as many arms as edges with a vertex in Ai as in
Figure 1.10. We glue arms of different pieces corresponding to the same edges as in 1.3, in such
a way that the resulting surface admits an orientation that induces on A its opposite orientation.
This is the orientation that we had previously fixed on Σ. The output of this procedure is a pair
(Σ, A) given by an oriented surface and an union A of its boundary components.

Figure 1.10: Partial thickening of Ai with 5 arms, this corresponds to a collar of a boundary component
of a surface. The arrow indicates the orientation of Ai which is the opposite orientation that it inherits as
boundary component of Σ.

It is clear that Γ is a regular retract of the thickening surface. Reciprocally: for any pair
(Σ, A) given by an oriented surface and a union of some boundary components, if there is a graph
Γ embedded in Σ and containing A, such that Γ is a regular retract of Σ, then we say that (Σ, A)
is the thickening of (Γ, A).

5



Chapter 1 Ribbon graphs

Notation 1.11. From now on the letter I denotes an interval. Unless it is otherwise specified,
it denotes the unit interval I. Let (Γ, A) be a relative ribbon graph, whose thickening is (Σ, A).
There is a connected component of Σ\Γ for each boundary component Ci of Σ not contained in A,
this component is homeomorphic to Ci × [0, 1) (this homeomorphism or product structure is given
by the choice of regular retraction Definition 1.2).

We denote by Σ̃i the compactification of Ci × (0, 1] to Ci × I. We denote by ΣΓ the surface
obtained by cutting Σ along Γ, that is the disjoint union of the Σ̃i. An identification of ΣΓ with
∂Σ× I is also called a product structure. This identification is not unique.

Let
gΓ : ΣΓ → Σ

be the gluing map. We denote by Γ̃i the boundary component of the cylinder Σ̃i that comes from
the graph (that is gΓ(Γ̃i) ⊂ Γ) and by Ci the one coming from a boundary component of Σ (that
is gΓ(Ci) ⊂ ∂Σ). From now on, we take the convention that Ci is identified with Ci×{0} and that
Γ̃i is identified with Ci × {1}. We set Σi := gΓ(Σ̃i) and Γi := gΓ(Γ̃i). Finally we denote gΓ(Ci)
also by Ci since gΓ|Ci is bijective. The orientation of Σ induces an orientation on every cylinder
Σ̃i and on its boundary components.
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Chapter 2

Mapping class groups

In this chapter we review some aspects of the group of homeomorphisms of a surface up to isotopy:
the mapping class group. We distinguish between isotopies that are allowed to change the action
on the boundary and those which are not. This distinction leads to different notions of mapping
class group .

All of this material is widely known. For example, two good references on the topic are [FM12]
for the general theory of mapping class group of surfaces, and [CB88] for the more specific subject
of the Nielsen-Thurston classification of automorphisms of surfaces. For the sake of completeness
and to make this work as self contained as possible, we prove some of these basic results for which
there was not a canonical reference.

We start with the first notion of mapping class group.

Definition 2.1. We say that two homeomorphisms φ and ψ of Σ are boundary free isotopic or
freely isotopic if there exists a family of homeomorphisms of Σ, namely, a continuous map

θ : Σ× I → Σ

such that θs(x) := θ(x, s) is a homeomorphism of Σ for each s ∈ I, and such that θ0 = φ and
θ1 = ψ. We write [ψ] = [φ]. The mapping class group MCG(Σ) is the group of equivalence classes
with the operation induced by composition of homeomorphisms.

We denote by MCG+(Σ) the subgroup of orientation preserving homeomorphisms up to isotopy.
A homeomorphism of a surface is periodic in MCG(Σ) or periodic up to boundary free isotopy

if there exists n ∈ N such that [φn] = [id], i.e. if it is a finite order element of the mapping class
group.

We are also interested in isotopy classes of automorphisms where we ask the isotopy to preserve
the action on the boundary. This leads to a different notion of mapping class group.

Definition 2.2. Given two homeomorphisms φ and ψ of Σ that both leave invariant some subset
B ⊂ ∂Σ such that φ|B = ψ|B, we say they are isotopic relative to the action φ|B if there exists a
family of homeomorphisms of Σ that isotope them as before and such that any homeomorphism of
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Chapter 2 Mapping class groups

the family has the same restriction to B as φ and ψ. We write [φ]B,φ|B = [ψ]B,φ|B . We denote by
MCG(Σ, B, φ|B) the set of classes [φ]B,φ|B with respect to this equivalence relation. We denote by
MCG+(Σ, B, φ|B) if we restrict to homeomorphisms preserving orientation.

If the action is the identity on B, we omit the action in the notation and recover the clas-
sical notion of isotopy relative to B, that means that all the homeomorphisms in the isotopy fix
B pointwise. We write these classes simply by [φ]B and we denote by MCG+(Σ, B) the set of
homeomorphisms up to isotopy relative to B that preserve orientation.

In the case B = ∂Σ we will simply write [φ]∂,φ|∂ or [φ]∂ .

IfB is the whole boundary ∂Σ we recover the classical notion of mapping classes fixing pointwise
the boundary and the group MCG(Σ, ∂Σ). If B is empty we are in the case of Definition 2.1 and
we recover the mapping class group up to boundary free isotopy. These two extreme cases are the
most important, but we will need the more general notion when we develop later relative tête-à-
tête homeomorphisms fixing pointwise the union of some boundary components that we denote by
∂1Σ.

Observe that MCG(Σ, ∂, φ|∂) is not a group. However, the group MCG(Σ, ∂Σ) acts transitive
and freely on it, i.e., it is a MCG(Σ, ∂Σ)-torsor.

Remark 2.3. There exists analogous definitions changing homeomorphism by diffeomorphism in
Definitions 2.1 and 2.2. Nevertheless, it is proved in [FM12, Section 1.4] that in each class of
homeomorphisms there is an unique class of diffeomorphisms contained. So the two mapping class
groups are canonically isomorphic. For this reason, when differentiability is not a central matter
of the discussion we use either the term homeomorphism or the term automorphism of a surface.

In 1974, Thurston proved what is known as the Nielsen-Thurston classification. This classi-
fication says that, up to isotopy, you can break any diffeomorphism φ : Σ → Σ of a surface into
periodic pieces and pseudo-Anosov pieces by cutting along an invariant system of simple closed
curves.

A periodic piece is a subsurface Σ̃ ⊂ Σ such that φ|Σ̃ is a finite-order diffeomorphism.
A pseudo-Anosov piece is a subsurface Σ̃ ⊂ Σ such that φΣ̃ is pseudo-Anosov: there is a

couple of singular transverse measured foliations (Fu, µu), (Fs, µs) that are preserved by φΣ̃ and
whose stretch factors are λ and λ−1. Since the present work does not deal with pseudo-Anosov
diffeomorphisms we omit definitions for these diffeomorphisms. A detailed exposition of the topic
can be found in [FM12, Chapters 13 and 14].

A refined version of the Nielsen-Thurston classification is the following theorem.

Theorem 2.4 (Equivalent to Corollary 13.3 in [FM12]). Let φ : Σ→ Σ be an orientation preserv-
ing diffeomorphism that fixes pointwise a subset of boundary components ∂1Σ ⊂ Σ possibly empty.
Then, there exist

• A collection C of disjoint simple closed curves that includes boundary-parallel curves for all
boundaries in ∂1Σ.

• A collection A of pairwise disjoint tubular neighborhoods Ai for each curve Ci in C.

• A diffeomorphism in the same class, that is, φ̂ ∈ [φ]∂1 .

Such that:

• φ̂(C) = C and φ̂(A) = A.

• φ̂ restricted to each connected component of Σ \ A (and its iterations by φ̂) is either periodic
or pseudo-Anosov.
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In this work, we focus on the study of automorphisms that only contain periodic pieces in this
classification: pseudo-periodic automorphisms . We start by talking about finite-order mapping
classes in MCG(Σ) which is the most simple case. Then we do a brief introduction to Dehn twists
and we pass on to the study of mapping classes in MCG+(Σ, ∂Σ) which are of finite order when
seen in MCG+(Σ). These sections prepare the reader with the necessary tools to understand
Chapter 7.

We end the chapter with a review of the theory of mapping classes that only contain periodic
pieces in their classification but that are not (in general) of finite order: pseudo-periodic mapping
classes. This last section also contains results about automorphisms of collections of cylinders. It
prepares the reader to understand the constructions in Chapter 9.

2.1 Periodic automorphisms in MCG+(Σ)

In this section we focus on the case ∂1Σ = ∅. Thus we assume all isotopies to be boundary free.
A key result, only true in dimension 2 (see [RS77]), is the following classical theorem:

Theorem 2.5 (Nielsen’s Realization Theorem [Nie43] , also see Theorem 7.1 in [FM12]). If φn
is isotopic to the identity, then there exists φ̂ ∈ [φ] such that φ̂n = Id. Moreover, there exists a
metric on Σ such that φ̂ is an isometry.

Note that the theorem above is included in Theorem 2.4.

Lemma 2.6. Let φ : Σ → Σ be an orientation-preserving isometry of Σ. Then either the fixed
points are isolated or φ is the identity. Moreover, if φ is a periodic homeomorphism, then the
ramification points are also isolated.

Proof. Let x be an accumulation point of the set of fixed points, let B be a small geodesic ball
around x and let y ∈ B be a different fixed point. Let z ∈ B be any other point. We are going to
show that z is a also a fixed point. Take the only geodesic path γ joining x and y and the only
geodesic path γ′ joining x and z. Since x and y are fixed points and the image of a geodesic by an
isometry is a geodesic, then γ is fixed by φ. We have that the image of γ′ by φ is also a geodesic
and since the angle that γ and γ′ form at x must be preserved, there are only two possibilities
for the image of γ′. One of them inverts orientation and the other sends γ′ to itself. So γ′ is also
formed by fixed points, and in particular z is a fixed point.

The second part of the statement follows by applying the same argument to a power of φ.

Notation 2.7. Let φ be a periodic orientation preserving homeomorphism of Σ that is not the
identity. Since φ acts properly discontinuously on Σ, the orbit space Σφ is a surface and the
quotient map

p : Σ→ Σφ

is a Galois branched covering map. The set of points in Σ whose orbit has cardinality strictly
smaller than the order of φ are called ramification points. Its images by p are called branch points.

Remark 2.8. Since the covering map p is Galois , any point at the preimage by p of a branch
point is a ramification point.

9



Chapter 2 Mapping class groups

Definition 2.9. Let φ be a homeomorphism of Σ that leaves a boundary component Ci ⊆ ∂Σ in-
variant. We cap this boundary component Ci with a disk D2 obtaining a new surface Σ′. We extend
φ to a periodic orientation-preserving homeomorphism of Σ′ as follows: if θ is the angular and r
the radial coordinates for D2 then we define Φ : D2 → D2, (θ, r) 7→ (r, φ(θ)). The homeomorphisms
Φ and φ glue along Ci. This procedure is called the Alexander trick.

Lemma 2.10. Let φ : Σ → Σ be an orientation-preserving periodic homeomorphism of Σ that is
not the identity. Then all the ramification points of p : Σ→ Σφ are in the interior of Σ.

Proof. A ramification point is a point such that φk(x) = x but φk 6= id. Hence, replacing φ by
φk it is enough to prove that there are no fixed points at the boundary. If there is a fixed point p
at the boundary, since φ leaves invariant the boundary and preserves orientation, it has to fix the
boundary near x, but since ramification points are isolated, then φ has to be the identity.

Corollary 2.11. Given a periodic homeomorphism φ of a surface that leaves all the boundary
components invariant, the restriction to any boundary component has the same order than φ.

Remark 2.12. Given φ and ψ two homeomorphisms of Σ that both leave a spine Γ invariant, if φ|Γ
and ψ|Γ are isotopic, then φ and ψ are isotopic. In other words, the isotopy type of the restriction
of a homeomorphism to an invariant spine determines the isotopy type of the homeomorphism of
Σ. This follows from the fact that ΣΓ is a collection of cylinders Σ̃i and the mapping class group
MCG(Σ̃i, Γ̃i, φ|Γ̃i) is trivial. Recall Notation 1.11 and Definition 2.2.

Lemma 2.13. Let Σ be a surface with ∂Σ 6= ∅ which is not a disk or a cylinder. Let φ : Σ → Σ
be an orientation preserving homeomorphism. Then φ is periodic up to isotopy if and only if there
exists φ̂ ∈ [φ] such that there exists a spine Γ of Σ which is invariant by φ̂.

Proof. Assume φ is periodic up to isotopy. By Nielsen’s realization Theorem (Theorem 2.5) we
can assume that φ is periodic. Let Σφ be the orbit space of φ.

The quotient map p : Σ → Σφ is a branched covering map whose ramification points are
isolated and are contained in the interior of Σ by Lemmas 2.6 and 2.10. Pick any spine Γφ for Σφ
containing all the branch points. We claim that Γ := p−1(Γφ) is an invariant spine for Σ. Indeed,
it is invariant by construction since the preimage of every point is precisely the orbit of that point.
Since Γφ is a spine of Σφ then there exists a regular retraction Σφ× I → Γφ. Since Γφ contains all
ramification points, that retraction lifts to a retraction from Σ to Γ.

Conversely, assume that an invariant spine Γ exists for some φ̂ ∈ [φ]. Since φ̂ leaves the spine
invariant. We consider the spine with a graph structure only with vertices of valency greater than
2. Then φ̂ acts as a permutation on edges and the vertices. Then, there is a power of φ̂, say φ̂m
that leaves all the edges and vertices invariant. Then, we just observe that given any two intervals
I, I ′, any two orientation preserving homeomorphisms h, g : I → I ′ are isotopic relative to the
boundary of I. Thus, φ̂m|Γ is isotopic to the identity. Since Γ is a spine, by Remark 2.12 we find
that φ̂m is isotopic to the identity.

In the theorem above we excluded the cases when Σ is a cylinder or a disk for being trivial. In
this case every homeomorphism is isotopic to a periodic one.

Notation 2.14. If a homeomorphism φ of Σ leaves a spine Γ invariant, then the homeomorphism
lifts to a homeomorphism of ΣΓ that we denote by φ̃.
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For a periodic homeomorphism that leaves a boundary component invariant there is a notion
of rotation number associated to that boundary component:

Definition 2.15. Let φ : S1 → S1 be an orientation preserving periodic homeomorphism of the
circle of order q. Let x ∈ S1 and let xφ be the orbit of x by φ and let p be the number of points
in xφ that lie on the arc connecting x with φ(x) in the positive direction. We define the rotation
number of φ as the quotient p

q and we denote it by rot(φ). The fraction p
q is always reduced and

the number p/q is in the interval (0, 1].

The above definition corresponds to Poincare’s classical notion of rotation number of a home-
omorphism of a circle into itself. Poincare’s rotation number takes values in R/Z, and in Q/Z if
the homeomorphism is periodic. We are taking the unique representative in the interval (0, 1].

The following is well-known:

Lemma 2.16. Let φ be an orientation preserving periodic homeomorphism of the circle such that
rot(φ) = p/q, then φ is conjugate to the rotation of 2π pq radians.

Corollary 2.17. An orientation preserving periodic homeomorphism of the cylinder which leaves
invariant each boundary component is conjugate to a rotation.

2.2 Dehn twists

Let A be an annulus. The mapping class group MCG+(A, ∂A) ' Z and it is generated by a
right-handed Dehn twist. All its elements are freely isotopic to the identity, i.e. MCG+(Σ) ' {1}.

Definition 2.18 (Dehn twist). Let D : S1 × I → S1 × I be the homeomorphism defined by
D(x, t) = (x + t, t) where S1 = R/Z. A homeomorphism φ : A → A of an annulus is said to be a
right-handed Dehn twist if there exists a parametrization η : S1× I → A such that φ is isotopic to
η ◦ D ◦ η−1.

Let Σ be a surface and let α be a simple closed curve in Σ and N a tubular neighborhood of α.
A right-handed Dehn twist around α is a homeomorphism of Σ that is a Dehn twist in N and the
identity outside N . It is well defined up to isotopy.

The inverse of a right-handed Dehn twist is a left-handed Dehn twist.

Remark 2.19. In this work we take the convention that what we call negative Dehn twists are
right-handed Dehn twists. See Figure 2.20.

Note that depending on the source, these are sometimes called positive Dehn twists. Our
convention agrees, for example, with [MM11].

Let Σ be a surface with non empty boundary ∂Σ. Consider a non-empty union ∂1Σ of boundary
components. Let φ be an orientation preserving homeomorphism of Σ, fixing pointwise ∂1Σ and
freely isotopic to a periodic one φ̂. Our next aim is to define a notion of fractional Dehn twist
coefficient at each connected component of ∂1Σ.

We start recalling some facts about Dehn twists. If we do not say the contrary, the letter D
with a subindex, denotes a negative (right-handed) Dehn twist around some curve that will be
clear from the context.
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Figure 2.20: We see an oriented annulus on the left and the image of the red curve by a right-handed
Dehn twist on the right. The little curve on the top of each picture represents the orientation on the
annulus.

Lemma 2.21. Let α1, . . . , αm be a set of non-trivial, pairwise disjoint, and pairwise non-homotopic
closed curves. Then the group generated by Dehn twists along those curves < Dα1 , . . . ,Dαm > is
free abelian of rank m.

Proof. See [FM12, Lemma 3.17].

Corollary 2.22. Let Σ be a surface with r > 0 boundary components that is not a disk or an
annulus. Then the group generated by the Dehn twists D1, . . .Dr along curves parallel to each
boundary component is free abelian of rank r.

Proof. Except when Σ is a disk or an annulus, the set of boundadry parallel curves is in the
hypothesis of Lemma 2.21.

2.3 Freely periodic automorphisms

Now we focus on the mapping class group where homeomorphisms and isotopies fix pointwise the
union of some boundary components that we denote by ∂1Σ ⊂ ∂Σ (recall Definition 2.2).

Consider a non-empty union ∂1Σ of boundary components. In this section we study the
elements of MCG+(Σ, ∂1Σ) that are freely isotopic to a periodic one. If φ : Σ → Σ is a homeo-
morphism with φ|∂1Σ = id, we denote by [φ]∂1 its class in MCG+(Σ, ∂1Σ).

In the following lemma we see in that the isotopy class fixing ∂1Σ pointwise there is always a
representative leaving a spine invariant.

Lemma 2.23. Let φ be an orientation preserving homeomorphism of a surface Σ which fixes
pointwise a non-empty union ∂1Σ of boundary components, and which is freely isotopic to a periodic
homeomorphism φ̂. Then there there exists a collar U of ∂1Σ, a homeomorphism f : Σ → Σ \ U ,
and a homeomorphism ψ of Σ such that: ψ is isotopic relative to ∂1Σ to φ and the restriction
ψ|Σ\U is periodic and equal to f ◦ φ̂ ◦ f−1.

In particular ψ leaves a spine Γ invariant and ψ|Γ is periodic.

Proof. Let V be a collar neighborhood of ∂1Σ parametrized as V ' ∂1Σ × I where ∂1Σ ∩ V
corresponds to ∂1Σ×{1}. Let Ut := ∂1Σ×[1−t/2, 1] with t ∈ I be a family of collar neighborhoods
contained in V and denote U := U1.

Let ft : Σ→ Σ \ Ut with t ∈ I, be a family of maps defined by

ft|V (x, s) := (x, (1− t/2) · s), ft|Σ\V := id .
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Observe that f0 = id and that f := f1 sends Σ to Σ \ U homeomorphically.
We define ψ as follows:

ψ|Σ\U := f ◦ φ̂ ◦ f−1, ψ|U := Φ|∂1Σ×I .

And observe that it satisfies the condition of the statement.
And finally, we define the isotopy Ψt from φ to ψ by:

Ψt(x) =
{

ft ◦ Φt ◦ f−1
t if x ∈ Σ \ Ut

(Φs(x′), s) if x = (x′, s) ∈ Ut ' ∂1Σ× [1− t/2, 1]

The last assertion of the theorem is Lemma 2.13 applied to ψ|Σ\U .

Lemma 2.24. Let Σ be a surface that is neither a disk nor a cylinder. Let ∂1Σ be non-empty
union of r boundary components of Σ. Let φ be an orientation preserving homeomorphism of Σ
fixing ∂1Σ pointwise. If φ is freely isotopic to the identity then there exist unique integers n1, . . . , nr
such that the following equality of mapping classes holds:

[φ]∂1 = [Dn1
1 ]∂1 · . . . · [Dnr

r ]∂1 .

Proof. By Lemma 2.23 we can assume that φ is the identity outside a collar neighborhood U =
⊔
Ui

of ∂1Σ where Ui is a collar for the boundary component Ci. The restrictions [φ|Ui ]∂ are elements
in MCG+(Ui, ∂Ui). Since the Ui are cylinders, the group MCG+(Ui, ∂Ui) is generated by the
boundary Dehn twist [Di]∂ and we can use Corollary 2.22 and get that [φ]∂1 = [Dn1

1 ]∂1 · [Dn2
2 ]∂1 ·

. . . · [Dnr
r ]∂1 and the numbers n1, ..., nr are unique.

In the next definition we introduce the concept of fractional Dehn twist coefficient which is a
rational number that measures the amount of twisting at boundary components of an element in
MCG+(Σ, ∂1Σ) that is periodic in MCG+(Σ).

Definition 2.25. Let Σ be a surface that is neither a disk nor a cylinder. Let ∂1Σ be a non-empty
union of r boundary components of Σ. Let φ : Σ → Σ be a homeomorphism fixing pointwise ∂1Σ
and freely isotopic to a periodic one. Let m ∈ N such that [φm] = [id]. Let t1, . . . , tr be integers
such that [φm]∂1 = [Dt1

1 ]∂1 · . . . · [Dtr
r ]∂1 . We define the fractional Dehn twist coefficient at Ci by

rot∂1(φ,Ci) := ti/m.

Note that the fractional Dehn twist coefficients do not depend on the number m we choose to
compute them or the representative φ ∈ [φ]∂1 .

Now we describe how to compute the fractional Dehn twist coefficient in terms of a invariant
spine. Let φ be an orientation preserving homeomorphism of Σ that fixes a non-empty union ∂1Σ
of components of the boundary and which is freely isotopic to a periodic one. Let A be the union
of the remaining components of the boundary. Suppose that there exists a relative spine (Γ, A) in
(Σ, (Γ, A)) which is invariant by φ (recall 1.9).

We cut Σ along Γ into a disjoint union of cylinders, one for each component Ci of ∂1Σ. We
use notations Notation 1.11 and Notation 2.14. We lift the regular retraction Σ→ Γ to a regular
retraction ΣΓ → Γ̃ and the homeomorphisms φ to a homeomorphism φ̃ of ΣΓ.

Let pi
n be the rotation number of φ̃|Γ̃i measure with the orientation of Γ̃i as boundary of the

cylinder. Choose in the cylinder Σ̃i an oriented retraction line Li from Ci to Γ̃i. Consider the

13



Chapter 2 Mapping class groups

orientation in Σ̃i inherited from the orientation in Σ. We take the classes [Li] and [φ(Li)] in
H1(Σ̃i, ∂Σ̃i). The class

φ̃|n
Γ̃i

([Li])− [Li]

belongs to H1(Σ̃i) since φ̃|n
Γ̃i

is the identity at the boundary. Let

ki := (φ̃|n
Γ̃i

([Li])− [Li]) · [Li],

that is the oriented intersection number of the two homology classes.

Definition 2.26. According with the previous procedure we define

rot(φ,Γ, Ci) := ki/n

In the next lemma we see that the two definitions of fractional Dehn twist coefficient coincide:

Lemma 2.27. Let Σ be a oriented surface with non-empty boundary that is neither a disk nor
a cylinder. Let φ : Σ → Σ be an orientation preserving homeomorphism that fixes a non-empty
union ∂1Σ of boundary components. Denote by A the union of the remaining boundary components.
Assume that φ fixes a relative spine (Γ, A) and that its restriction to it is periodic. Let Ci be a
boundary component contained in ∂1Σ. Then the equality rot∂1(φ,Ci) = rot(φ,Γ, Ci) holds. In
particular rot(φ,Γ, Ci) does not depend on the chosen spine Γ or even on the representative of
[φ]∂ .

Proof. Let rot(φ,Γ, Ci) = ki/n be the fractional Dehn twist coefficients as in Definition 2.26. Note
that φn fixes Γ and that the lifting φ̃n|Σ̃i is isotopic relative to the boundary to the composition
of ki right boundary Dehn twist if ki is positive (and −ki left Dehn twists if ki is negative) around
the boundary component Ci. Then [φn]∂1 = [D1]k1 · ... · [Dr]kr and the result follows.

Corollary 2.28. Let g, h : Σ→ Σ be two homeomorphisms that fix pointwise a non empty union
∂1Σ of components of the boundary ∂Σ. Let A be the union of the remaining boundary components.
Assume that both preserve a common relative spine (Γ, A) and that they coincide at it. Then the
equality rot∂(g, Ci) = rot∂(h,Ci) holds for every i if and only if h and g are isotopic relative to
∂1Σ.

Proof. The two properties we want to prove equivalent are straightforward equivalent to the equal-
ity rot∂(f,Γ, Ci) = rot∂(g,Γ, Ci) which is contained in Lemma 2.27.

Corollary 2.29. Let φ : Σ → Σ be a homeomorphism that fixes pointwise a non-empty union
∂1Σ of components of the boundary, and that is isotopic to a periodic homeomorphism φ̂. Let
Ci be a component in ∂1Σ. Then the usual rotation number up to an integer rot(φ̂|Ci) equals
|rot∂(φ,Ci)− brot∂(φ,Ci)c | with bxc is the biggest integer less that x.

Remark 2.30. We observe that by our convention on Remark 2.19, negative (or equivalently
right-handed Dehn twists) produce positive fractional Dehn twist coefficients.

14
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2.4 Pseudo-periodic automorphisms

In this section we focus on automorphisms of surfaces whose mapping classes only contain periodic
pieces in their classification by Theorem 2.4: pseudo-periodic automorphisms. Since we have
already studied freely-periodic automorphisms, the only part that is left to study of a pseudo-
periodic automorphism are the separating annuli. Hence, most of this section is devoted to study
and give names to phenomena related to automorphisms of collection of annuli.

Most of this section is contained in [MM11].

Definition 2.31. An automorphism φ : Σ → Σ is pseudo-periodic if it is isotopic to an auto-
morphism satisfying that there exists a finite collection of disjoint simple closed curves C such
that

1. φ(C) = C

2. φ|Σ\C is freely isotopic to a periodic automorphism.

Assuming that none of the connected components of Σ \ C is either a disk or an annulus and
that the set of curves is minimal, which is always possible, we name C an admissible set of curves
for φ.

The following theorem is a particularization on pseudo-periodic automorphisms of the more
general result Theorem 2.4 that describes a canonical form for every automorphism of a surface.

Theorem 2.32 (Almost-Canonical Form and Canonical Form). Let Σ be a surface with ∂Σ 6= ∅.
Any pseudo-periodic map of Σ is isotopic to an automorphism in almost-canonical form, that
means a automorphism φ which has an admissible set of curves C = {Ci} and tubular neighborhoods
A = {Ai} with Ci ⊂ Ai such that:

1. φ(A) = A and φ(C) = (C).

2. The map φ|Σ\A is periodic.

When the set C is minimal we say that φ is in canonical form.

Remark 2.33. In the case that we are considering a pseudo-periodic automorphism of Σ that
fixes pointwise some components ∂1Σ of the boundary ∂Σ we can always find a canonical (or
almost-canonical) form as follows. We can find an automorphism isotopic relative to ∂1Σ that
coincides with a canonical form as in the previous theorem outside a collar neighborhood U of
∂1Σ. We may assume that there exists an isotopy connecting the automorphism and its canonical
form relative to ∂1Σ. That is, just use the stronger Theorem 2.4 in the case where there are not
pseudo-Anosov pieces.

Automorphisms of annuli that are periodic on the boundary
The rest of the chapter consists in results and definitions about automorphisms of the cylinder that
are periodic on the boundary. These are of extreme importance for the understanding of pseudo-
periodic automorphisms since the separating annuli in A are cylinders with automorphisms of this
type. Most of the following results and definitions are contained in [MM11].

15
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Notation 2.34. Let s, c ∈ R. We denote by Ds,c and call linear twist the automorphism of S1× I
given by by (x, t) 7→ (x+ st+ c, t) (we are taking S1 = R/Z). Observe that

Ds,c ◦ Ds′,c′ = Ds+s′,c+c′ ,

D−1
s,c = D−s,−c.

In this work we always have s ∈ Q.

Remark 2.35. We can isotope Ds,c to a automorphism Dps,c that is periodic on some tubular
neighborhood of the core curve S1 × {1/2} of the annulus while preserving the action on the
boundary ∂(S1 × I):

Dps,c(x, t) =


(x+ 3s(t− 1

3 ) + c, t) 0 ≤ t ≤ 1
3

(x+ c, t) 1
3 ≤ t ≤

2
3

(x+ 3s(t− 2
3 ) + c, t) 2

3 ≤ t ≤ 1
(2.36)

Definition 2.37. Let C ⊂ Σ be a simple closed curve embedded in an oriented surface Σ. And
let A be a tubular neighborhood of C. Let D : Σ → Σ be a automorphism of the surface with
D|Σ\A = id. We say that D is a negative Dehn twist around C or a right-handed Dehn twist if
there exist a parametrization η : S1 × I → A preserving orientation such that

D = η ◦ D1,0 ◦ η−1.

A positive Dehn twist is defined similarly changing D1,0 by D−1,0 in the formula above. Com-
pare this definition with Definition 2.18.

Remark 2.38. If φ|∂Ai is the identity then

φ = η ◦ Ds,0 ◦ η−1

for some s ∈ Z, that is φ = Ds for some right-handed Dehn twist as in Definition 2.37.

Lemma 2.39 (Linearization). Let Ai be an annulus and let φ : Ai → Ai be a automorphism that
does not exchange boundary components. Suppose that φ|∂Ai is periodic. Then, after an isotopy of
φ preserving the action on the boundary, there exists a parametrization η : S1 × I → Ai such that

φ = η ◦ D−s,−c ◦ η−1

for some s ∈ Q, some c ∈ R.
Let φj : A1 → A1, j = 0, 1 be automorphisms of the form ηj ◦ D−s,−c ◦ ηj. Then there exists

h : A1 → A1 isotopic to the identity such that φ0 = h ◦ φ1 ◦ h−1.

Proof. See [MM11, Theorem 2.3].

Now we treat automorphisms of the cylinder that exchange boundary components.

Definition 2.40. Let φ be a pseudo-periodic automorphism in some almost-canonical form. Let
C1, . . . , Ck be a subset of curves in C that are cyclically permuted by φ, i.e. φ(Ci) = Ci+1 for
i = 1, . . . , k− 1 and φ(Ck) = C1. Suppose that we give an orientation to C1, . . . , Ck so that φ|Ci for
i = 1, . . . , k−1 is orientation preserving. We say that the curves are amphidrome if φ|Ck : Ck → C1
is orientation reversing.

16



Mapping class groups Chapter 2

Notation 2.41. We denote by D̃s and call special twist the automorphism of S1 × I given by

D̃s(x, t) =


(−x− 3s(t− 1

3 ), 1− t) 0 ≤ t ≤ 1
3

(−x, 1− t) 1
3 ≤ t ≤

2
3

(−x− 3s(t− 2
3 ), 1− t) 2

3 ≤ t ≤ 1
(2.42)

In this work case we always assume s ∈ Q.

Lemma 2.43 (Specialization). Let Ai be an annulus and let φ : Ai → Ai be an automorphism
that exchanges boundary components. Suppose that φ|∂Ai is periodic. Then after an isotopy fixing
the boundary, there exists a parametrization η : S1 × I → Ai such that

φ = η ◦ D̃−s ◦ η−1

for some s ∈ Q.

Proof. See [MM11, Lemma 2.3].

Definition 2.44 (Screw number). Let φ be a pseudo-periodic automorphism in almost-canonical
form. Let n be the order of φ|Σ\A. Then φn|∂Ai=id, so φn|Ai equals D|

si
Ai for a certain si ∈ Z.

Let α be the length of the orbit in which Ai lies and let α̃ ∈ {α, 2α} be the smallest number
such that φα̃ does not exchange the boundary components of A1. We define

s(Ai) := −si
n
α̃.

We call s(Ai) the screw number of φ at Ai or at Ci.

Lemma 2.45. Let φ be an automorphism in almost-canonical form (recall Theorem 2.32) and let
{Ai} ⊂ A be a set of k annuli cyclically permuted by φ, i.e. φ(Ai) = Ai+1 such that φk does not
exchange boundary components. Then there exist coordinates

ηi : S1 × I → Ai

for the annuli in the orbit such that

η−1
j+1 ◦ φ ◦ ηj = D−s/k,−c/k

where s and c are associated to A1 as in Lemma 2.39.

Proof. Isotope φ if necessary in order to take a parametrization of A1, associated to φα : A1 → A1
as in Lemma 2.39. Denote this parametrization by η1 : S1 × I → A1.

Define recursively ηj := φ ◦ ηj−1 ◦ Ds/α,c/α (see Notation 2.34).
Then,

η−1
j+1 ◦ φ ◦ ηj = D−s/α,−c/α.

For every j, the equation
ηj = φj−1 ◦ η1 ◦ Ds(j−1)/α,c(j−1)/α

holds. So
η−1

1 ◦ φ ◦ ηα = η−1
1 ◦ φ ◦ φα−1 ◦ η1 ◦ Ds(α−1)/α,c(α−1)/α = D−s/α,−c/α.

17
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Remark 2.46. By Remark 2.35 we can substitute D−s/k,−c/k by Dp−s/k,−c/k in the previous
lemma.

Remark 2.47. After this proof we can check that η−1
k ◦ φα ◦ ηk = D−s,−c to see that the screw

number s = s(Ai) and the parameter c modulo Z of Lemma 2.45 only depend on the orbit of
annuli in which Ai lies.

We observe also that the numbers s and c of Lemma 2.45 satisfy

• The number s equals s(Ai).

• The number c is only determined modulo Z and equals the usual rotation number (recall
Definition 2.15) rot(φαi |η(S1×{0})) but taking the representative in [0, 1) (instead of (0, 1]).

We have similar results for orbits of annuli that are amphidrome.

Lemma 2.48. Let φ be a automorphism in almost canonical form and let {Ai} ⊂ A be a set of k
annuli cyclically permuted by φ, i.e. φ(Ai) = Ai+1 such that φk exchanges boundary components.
Then there exist coordinates

ηi : S1 × I → Ai
for the annuli in the orbit such that

η−1
j+1 ◦ φ ◦ ηj = D̃−s/α

where s is associated to A1 as in Lemma 2.43.

Proof. The proof is completely analogous to that of Lemma 2.45.

Similarly as in Remark 2.47 we may deduce that the screw number does not depend on the
annulus, but rather on the orbit of annuli.

We end the section and the chapter with a definition that is important for the construction
of the mixed tête-à-tête twist in Chapter 9. It also gives us alternative understanding of the main
concept of Chapter 6.

Definition 2.49. Let C be a component of ∂Σ and let A be a compact collar neighborhood of C
in Σ. Suppose that C has a metric and its total length is equal to `. Let η : S1 × I → A be a
parametrization of A, such that η|S1×{1} : S1 × {1} → C is an isometry.

Suppose that S1 has the metric induced from taking S1 = R/`Z with ` ∈ R>0 and the standard
metric on R. A boundary Denh twist of length r ∈ R>0 along C is a automorphism Dηr (C) of Σ
such that:

1. It is the identity outside A

2. The restriction of Dηr (C) to A in the coordinates given by η is given by (x, t) 7→ (x+ r · t, t).

The isotopy type of Dηr (C) by isotopies fixing the action on ∂Σ does not depend on the parametriza-
tion η. When we write just Dr(C), it means that we are considering a boundary Dehn twist with
respect to some parametrization η.
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Graph manifolds

In this chapter we recall some theory about graph manifolds and combinatorial ways of encoding
their topology. We start by studying Seifert manifolds which are the building blocks for graph
manifolds. We take the time to fix conventions and notation carefully since they are important for
both chapters of Part III.

For more on this topic, see [Neu81], [NR78], [Neu97], [JN83], [HNK71], [Hat07] or [Ped09]. In
many aspects we follow [Ped09].

Fibered tori

Let p, q ∈ Z with q > 0 and gcd(p, q) = 1. Let D2 × [0, 1] be a solid cylinder. We consider the
natural orientation on D2 × [0, 1].

Let (t, θ) be polar coordinates forD2. Let rp/q : D2 → D2 be the rotation (t, θ) 7→ (t, θ+2πp/q).
Let Tp,q be the mapping torus of D2 induced by the rotation rp/q, that is, the quotient space

D2 × [0, 1]
(t, θ, 1) ∼ (t, rp/q(θ), 0) .

If p, p′ ∈ Z with p ≡ p′ mod q, then the rotations rp/q and rp′/q are exactly the same map so
Tp′,q = Tp,q. The resulting space is diffeomorphic to a solid torus naturally foliated by circles
which we call fibers. We call this space a solid (p, q)-torus or a solid torus of type (p, q). It has
an orientation induced from the orientation of D2 × [0, 1] ⊂ R3. The torus ∂Tp,q is oriented as
boundary of Tp,q.

We call the image of {(0, 0)} × [0, 1] ⊂ D2 × [0, 1] in Tp,q the central fiber . We say that q is
the multiplicity of the central fiber. If q = 1 we call the central fiber a typical fiber and if q > 1 we
call the central fiber a special fiber. Also any other fiber than the central fiber is called a typical
fiber.

If a and b are two oriented simple closed curves in ∂Tp,q, let [a] · [b] denote the oriented
intersection number of their classes in H1(∂Tp,q;Z). We describe 4 classes of simple closed curves
in the torus ∂Tp,q:
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Chapter 3 Graph manifolds

(1) A meridian m := ∂D2 × {y} ⊂ Tp,q. We orient it as boundary of D2 × {y}.

(2) A fiber f on the boundary ∂Tp,q. We orient it so that the radial projection to the central
fiber is orientation preserving. It satisfies that [m] · [f ] = q.

(3) A longitude l is a curve such that [l] is a generator of H1(Tp,q;Z) and [m] · [l] = 1.

(4) A section s. That is a curve that intersects each fiber exactly once. It is well defined up
integral multiples of f . It is oriented so that [s] · [f ] = −1.

f

l

m

Figure 3.1: A torus T2,5 with some closed curves marked on its boundary. In orange a fiber f , in blue a
meridian m and in red a longitude l. Their orientations are indicated.

We have defined two basis of the homology of ∂Tp,q, so there exist unique a, b ∈ Z such that
the equation

([s][f ]) = ([m][l])
(
a p
b q

)
(3.2)

holds in H1(∂Tp,q;Z). The matrix is nothing but a change of basis. It has determinant equal to −1
because [s], [f ] is, by definition, a negative basis in the homology group H1(∂Tp,q;Z) . Therefore
bp ≡ 1 mod q. Changing the class [s] by adding integer multiples of [f ] to it, changes b by integer
multiples of q.

3.1 Seifert manifolds

We now fix conventions on Seifert manifolds. Let B′ be an oriented surface of genus g and r + k
boundary components, Y ′ := B′ × S1 and s′ : Y ′ × S1 → B′ the projection onto B′. Let

(α1, β1), . . . , (αk, βk)

be k pairs of integers with αi > 0 and gcd(αi, βi) = 1 for all i = 1, . . . , k. Let N1, . . . Nk be k
boundary tori on Y ′. On each of them consider the following two curves si := B′ × {0} ∩Ni and
any fiber fi ⊂ Ni. Orient them so that {[si], [fi]} is a positive basis of Ni as boundary of Y ′. For
each i, consider a solid torus Ti = D2 × S1 and the curves m = ∂D2 × {0} and l := {pt} × S1

oriented so that {[m], [l]} is a positive basis of ∂Ti. Attach Ti to Ni along its boundary by(−αi c
−βi d

)
: ∂Ti → Ni (3.3)
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with respect to the two given basis. The numbers c and d are integers such that the matrix has
determinant −1. Note that, since the first column defines the attaching of the meridian, the gluing
is well defined up to isotopy independently of c and d.

The foliation on Ni extends to all Ti and gives it a structure of a fibered solid torus. After
gluing and extending the foliation to all k tori, we get a manifold Y and a collapsing map

s : Y → B

where B is the surface of genus g and r boundary components.

Definition 3.4. If a manifold Y can be constructed as above, we say that it is a Seifert manifold
and the map s : Y → B is a Seifert fibering for Y . We denote the resulting manifold a by

M(g, r, (α1, β1), . . . , (αk, βk)).

Each pair (αi, βi) is called Seifert pair and we say that it is normalized when 0 ≤ βi < αi. The
collection of numbers g, r, k, α1, β1, . . . , αk, βk are called Seifert invariants. The number

∑
βi/αi

is called orbifold Euler number and is well defined when r 6= 0 . When Y is a locally trivial circle
bundle, its orbifold Euler number coincides with its classical Euler number.

It is a theorem of Epstein [Eps72] that every 3-dimensional manifold foliated by circles is
diffeomorphic as a circle bundle to a Seifert fibering.

Example 3.5. Let E → B be the circle bundle over the closed surface of genus g with Euler class
equal to e. Then E is diffeomorphic as a circle bundle to

M(g, 0, (1, e)).

Remark 3.6. We gather a few properties of Seifert manifolds and Seifert fiberings that are useful
to have in mind:

(1) Two Seifert fiberings M(g, r, (α1, β1), . . . , (αk, βk)) and M(g′, r′, (α′1, β′1), . . . , (α′k, β′k)) are
diffeomorphic as circle bundles if and only if g = g′, r = r′ and after a permutation of the
indices βi/αi ≡ β′i/α

′
i mod 1. And if r = 0 it is also necessary that

∑
βi/αi =

∑
β′i/α

′
i.

See [Hat07, Proposition 2.1] (which has different conventions on the (α, β) invariants).

(2) A Seifert manifold Y admits a unique Seifert fibering Y → B (up to diffeomorphism of circle
bundles) except in certain, well-understood, cases where it admits infinitely many Seifert
fiberings. For more on this see [Hat07, Theorem 2.3].

We find, by definition of fibered solid torus and the construction of a Seifert manifold from its
invariants, the following lemma and corollary.

Lemma 3.7. Let Y → B be a Seifert fibering. If a fiber f has a neighborhood diffeomorphic to
a (p, q)-solid torus, then there exists b ∈ Z such that the (possibly unnormalized) Seifert invariant
corresponding to f is (q,−b) with bp ≡ 1 mod q. Conversely, the special fiber f corresponding to
a Seifert pair (α, β) has a neighborhood diffeomorphic as a circle bundle to a (−c, αi)-solid torus
with cβ ≡ 1 mod α.

Proof. One only needs to compare eq. (3.2) and eq. (3.3) and observe that one matrix is the inverse
of the other.
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Corollary 3.8. Let φ : Σ → Σ be an orientation preserving periodic automorphism of a surface
Σ of order n and let Σφ be the corresponding mapping torus. Let x ∈ Σ be a point whose isotropy
group in the group < φ > has order k with n = k · s. Then φs acts as a rotation in a disk around x
with rotation number p/k for some p ∈ Z and the (possibly unnormalized) Seifert pair of Mφ (the
mapping torus of φ) corresponding to the fiber passing through x is of the form (k,−b) with bp ≡ 1
mod k.

Proof. That φs acts as a rotation in a disk D ⊂ Σ around x with rotation number p/k for some
p ∈ Z>0 follows from the fact that x is a fixed point for φn/k. By construction of the mapping
torus of Σ we observe that the two mapping tori Mφ|D ' Dφn/k are diffeomorphic where D is a
small disk around x. By definition of fibered torus we observe that Dφn/k ' Tp,k. The rest follows
from Lemma 3.7.

3.2 Graph manifolds

In this section we study graph manifolds and links in graph manifolds. Briefly, a graph manifold
is a 3-dimensional manifold that can be cut along some tori in such a way that each remaining
piece is a Seifert manifold. It happens that these manifolds are quite combinatorial in the sense
that there exist graphs with decorations that encode their topology. We introduce graph manifolds
after introduce the first of these graphs

Plumbing graphs
Definition 3.9. A plumbing graph is a decorated graph Λ that encodes the information to recover
the topology of a certain 3-manifold.

It has vertex set V t A with A possibly empty. The valency rv of a vertex v is the number
of edges stemming from of v where loops are counted twice. Vertices in A are represented by
arrowheads and always have valency 1.

Now we describe the decoration of Λ and its meaning.

(1) Each vertex v ∈ V is decorated with 2 integers ev (placed on top) and gv placed on bottom.
Let rv be its valency. It represents the circle bundle Yv over the surface of genus gv and rv
boundary components such that (after picking a section on each boundary torus) its Euler
number is well defined and equal to ei. When g is omitted it is assumed to be 0. We consider
the sections as part of the data that comes with a plumbing graph. One can always change
the section at a given boundary torus provided that the section of another boundary torus in
the same circle bundle is also changed accordingly to preserve the Euler number. A collection
of sections defines an identification (up to isotopy) of each boundary torus with S1× S1 that
sends the section to the first factor and the fiber to the second. This identification is called
frame .

(2) Each edge is weighted by a sign + or − (when omitted, + is assumed). It tells us that the
circle bundles corresponding to the ends of the edge are glued along a boundary torus by the
gluing map J(x, y) = (y, x) if the sign is +, and −J if the sign is −. This map is defined
with respect to the chosen frame on each boundary torus. The section has been fixed in (1)
and the fiber does not change the diffeomorphism type of the resulting manifold after the
gluing.
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(3) An arrowhead (or vertex in A) represents that an open fibered solid torus is removed from
the corresponding circle bundle from where the edge comes out.

Definition 3.10. A manifold that is diffeomorphic to a manifold arising from a plumbing graph
is called graph manifold.

3.11. The construction of the 3-manifold Y associated to a plumbing graph is included in the
description of its decoration above. However, we make the following observation: we can interpret
a plumbing graph with arrows either as a graph manifold with non-empty boundary or as a closed
manifold together with a link. If we consider the first interpretation, we observe that we can
assume that all the arrows stem from of nodes since we can contract a bamboo (and not change
the diffeomorphism type of Y ) if the arrow stems from of the end of the bamboo. In the second
case, we consider the manifold Y resulting from removing all the arrowheads (and their edges)
from Λ. Now, for each arrow we pick a Seifert fiber of the corresponding circle bundle from which
the arrow stems. For example:

−1
−2

−3

−1
−2

−3

−6

These two plumbing graphs produce diffeomorphic 3-dimensional manifolds with boundary.
However, seen as closed manifolds with a link (in this case a knot) they are not diffeomorphic.
The plumbing graph on the left can be proved to be S3 together with a knot. In particular, it is
a Seifert manifold with two special fibers and the knot is a generic Seifert fiber. The plumbing
graph on the right represents a Seifert manifold with 3 special fibers and the knot consists of one
of these special fibers, concretely the one with Seifert invariants (6, 1). Observe that a (generic)
Seifert fiber of the circle bundle with Euler weight −6 corresponds to a special Seifert fiber of the
total 3-dimensional manifold seen as a Seifert manifold.

In Lemma 3.13 we see that star-shaped plumbing graphs correspond with Seifert fiberings and
how to obtain the Seifert invariants from the Euler weights.

Example 3.12. The following are three examples of plumbing graphs that recover the 3-sphere.
The first one corresponds to the gluing of two solid tori matching section with fiber. The second
one corresponds with the Hopf fibration (which has Euler number ±1 depending on the convention
on the orientation of the fibers). The third one below corresponds with the resolution graph of
the singularity x2 + y3 where we have added the link (the concepts of singularity theory are to be
defined in Chapter 5).

0 0 −1
S3'−1

−2

−3

We point out a minor correction to an argument in [Neu81] and reprove a known lemma which
is an essential ingredient in Part III. See also discussion after the lemma in Remark 3.16.

Lemma 3.13. Let Λ be a plumbing graph.
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(1) If a portion of Λ has the following form:

... ...n1

−e1 −e2 −ek
n2. . .−e2

Then the piece corresponding to the node n1 is glued to the piece corresponding to the node
n2 along a torus by a matrix of the form G =

(
a b
c d

)
with det(G) = −1 and where b

−a =
[e1, . . . , ek] with the numbers in brackets being the continued fraction expansion

−b
a

= e1 −
1

e2 − 1
e3− 1

...

.

(2) If a portion of Λ has the following form:

... n1

−e1 −e2 −ek. . .−e2

Then the piece corresponding to the node ni is glued along a torus to the boundary of a solid torus
D2 × S1 by a matrix of the form G =

(
a b
c d

)
that also has determinant equal to −1 and where

−d/c = [e1, e2, . . . , ek].
Furthermore, if any of the two bamboos in the statement has a odd number of − signs on its

edges, then change the gluing matrix for −G in each case.

Proof. Let T := D2×S1 be a solid torus naturally foliated by circles by its product structure. Let
s be the closed curve ∂D2 × {0} and let f be any fiber on the boundary of the solid torus. Orient
them so that {[s], [f ]} is a positive basis of H1(∂T ;Z). Let T , T ′ be two copies of the solid torus.
The node with Euler number −ei corresponds to the circle bundle T tEi T ′ where the gluing map
Ei : ∂T → ∂T ′ is the matrix (

−1 0
ei 1

)
.

In particular [f ] = [f ′] in H1(Yi;Z). The −1 in the upper left part reflects the fact that s inherits
different orientations from the two tori.

We treat the case (1) first. If Yi is the piece corresponding to the node ni with i = 1, 2 we find
that the gluing from Y1 to Y2 is

M1 tJ (A× S1 tE1 A× S1) tJ · · · tJ (A× S1 tEk A× S1) tJ Y2

Where A × S1 is the trivial circle bundle over the annulus A := [1/2, 1] × S1. Let (r, θ) be
polar coordinates for A. The two tori forming the boundary of A× S1 are oriented as boundaries
of A× S1. Observe that the map r((1/2, θ), η) = ((1, θ), η) is orientation reversing.

Let S1
t be the circle {t}×S1 ⊂ A. We define s = {S1

1/2}×{0} ⊂ A×S1 and f = {(1/2, 0)}×S1 ⊂
A× S1 and orient them so that the ordered basis {[s], [f ]} is a positive basis for H1(S1

1/2 × S1;Z)
seen as boundary of A × S1. We define similarly s′ = {S1

1} × {0}, f ′ = {(1, 0} × S1 and orient
them so that {[s′].[f ′]} is a positive basis for H1(S1

1 ×S1;Z). Then the homology classes [r(s)] and
[r(f)] form a negative basis. In fact [s′] = −[r(s)] and [f ] = [r(f)] in H1(A × S1;Z). This is the
reason of the matrices

(−1 0
0 1
)
in the eq. (3.14) below.
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So the gluing matrix G from a torus in the boundary of Y1 to a torus in the boundary of Y2 is
given by the following composition of matrices:

G = ( 0 1
1 0 )

(−1 0
0 1
) (−1 0

ek 1
) (−1 0

0 1
)

( 0 1
1 0 ) · · · ( 0 1

1 0 )
(−1 0

0 1
) (−1 0

e1 1
) (−1 0

0 1
)

( 0 1
1 0 )

= ( 0 1
1 0 )

( −1 0
−ek 1

)
( 0 1

1 0 ) · · · ( 0 1
1 0 )

( −1 0
−e1 1

)
( 0 1

1 0 )
= ( 0 1

1 0 )
( 0 −1

1 −ek
)
· · ·
( 0 −1

1 −e1
) (3.14)

Observe that each matrix in the definition of G has determinant −1 so det(G) = −1 because
there is an odd number of matrices. Hence G inverts orientation on the boundary tori, preserving
the orientation on the global 3 manifold. The result about the continued fraction follows easily by
induction on k.

Now we treat similarly the case (2). The gluing from a boundary torus from Y1 to ∂D2×S1 is

Y1 tJ (A× S1 tE1 A× S1) tJ · · · tJ (A× S1 tEk D2 × S1).

Hence, by a similar argument to the previous case, the matrix that defines the gluing is

G =
(−1 0
ek 1

) (−1 0
0 1
)

( 0 1
1 0 ) · · · ( 0 1

1 0 )
(−1 0

0 1
) (−1 0

e1 1
) (−1 0

0 1
)

( 0 1
1 0 )

=
(−1 0
ek 1

) (−1 0
0 1
)

( 0 1
1 0 )

( 0 −1
1 −ek−1

)
· · ·
( 0 −1

1 −e1
)

=
( 0 1

1 −ek
) ( 0 −1

1 −ek−1

)
· · ·
( 0 −1

1 −e1
) (3.15)

By the expression in the last line we see that all matrices involved but the one on the left,
have determinant 1 so we get det(G) = −1. Again, by induction on k, the result on the continued
fraction follows straight from the last line.

We treat now the last part of the statement about the case when there are a number of odd −
sign edges. This follows because each of these − signs amounts to multiplying G by −1 · Id (which
is a matrix that commutes with any other matrix).

Remark 3.16. Note the differences between the lemma above and [Neu81, Lemma 5.2] and the
discussion before it in that same reference: there the author does not observe that in each piece
A × S1, the natural projection from one boundary torus to the other is orientation reversing. So
the matrices

(−1 0
0 1
)
are not taken into account there.

In a more extended manner. The problem is with the claim that the matrix C (in equation (∗)
pg.319 of [Neu81]) is the gluing matrix. The equation above equation (∗) in that page, describes
the gluing between the two boundary tori as a concatenated gluing of several pieces. In particular
you glue a piece of the form A× S1 with another piece of the same form using the matrix Hk and
then you glue these pieces a long J- matrices. Then it is claimed that “since A×S1 is a collar” then
the gluing matrix (up to a sign) is JHkJ · · · JH1J . However, notice that each piece A × S1 has
two boundary tori, and they inherit "opposite" orientations. More concretely, the natural radial
projection from one boundary torus to the other is orientation reversing. So even, if they are a
collar (which they are), they interfere somehow in the gluing. That is why we add the matrices(−1 0

0 1
)
between each J and each Hk matrix.

We now state a known proposition that is a consequence of the previous lemma and that is
used in Part III. It tells us how to produce a star-shaped plumbing graph that represents a Seifert
manifold directly from its invariants. It can be found in several references in the literature. See
for example [NR78, Theorem 5.1] or [Neu81, Corollary 5.7].
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Proposition 3.17. LetM(g, r; (α̂1, β̂1), . . . , (α̂k, β̂k)) be a Seifert fibering. Then it is diffeomorphic
as a circle bundle to a Seifert fibering of the form

M(g, r; (1, b), (α1, β1), . . . , (αk, βk))

where 0 ≤ βi < αi for all i = 1, . . . , k. If r = 0 then b is uniquely defined. The corresponding
plumbing graph associated to the Seifert manifold is

. . .

. . .

. . .

...b

−b11 −b12

−bk−11

−bk1

−b1M1−1 −b1M1

−bk−1Mk−1

−bkMk

g

...r

where the numbers bij are the continuous fraction expansion for αi/βi, that is

αi
βi

= bi1 −
1

bi2 − 1
bi3− 1

...

Proof. The proof can be found in the cited references before the proposition. We sketch it here.
Observe that we can always introduce an “artificial” Seifert pair (1, 0) to the given Seifert

fibering. Then we use the result of Remark 3.6 (1). More concretely, let b1 ∈ Z such that
0 ≤ β̂1 + b1α̂1 < α̂1. Now set (α1, β1) := (α̂1, β̂1 + b1α̂1) and change (1, 0) for (1,−b1). After
repeating the process for all k Seifert pairs, we get that 0 ≤ βi < αi for all i and that the pair
(1, 0) has turned into (1, b) = (1,

∑
i−bi).

If r = 0, then we do not need the sum
∑
i βi/αi to be constant (see again Remark 3.6 (1)).

So, we do not need to make the modification to the pair (1, 0). In this case the number b is not
well defined (the proposition is true for any b in this case). Think now of the case r = 0. We
observe that the ki are uniquely determined, so the modifications to the pair (1, b) are uniquely
determined as well. We conclude again by Remark 3.6 (1).

The statement on the plumbing graph that represents the figure follows from using Lemma 3.13
and then applying “plumbing calculus” to the graph (see next remark).

Remark 3.18 (Plumbing calculus). Two plumbing graphs that represent diffeomorphic manifolds
are related by a series of “‘moves”. This is the content of the so-called “plumbing calculus” (see
[Neu81] for more). The following are two examples of these moves:

... ...
e0 e1−1 ... ...

e0 + 1 e1 + 1

...
e0 e10

...
e0 + e1

(1)

(2)

Actually with these two moves, one is able to prove the following equivalence of graphs:

26



Graph manifolds Chapter 3

...
e0 −1

...
e0 0

(a)

(b)
−b

−2

· · ·
−2 ...

e0 + b

...
e0 − b

b− 1

By applying move (1) to (a) iteratively and move (2) to (b) we get the depicted equivalences.
Observe that the arm of the case (a) corresponds to the continued fraction of 1/b when b is

positive, that is, to the Seifert pair (1, b). Similarly, the arm of the case (b) corresponds to the
continued fraction expansion of 1/− b for b positive, that is, to the Seifert pair (1,−b).

This is enough to complete the proof of the previous lemma.

Waldhausen graphs and links
We already showed how can a plumbing graph with arrows represents a 3 dimensional manifold
together with a link. This inspires the following definition. For more on Waldhausen graphs, see
[Wal67, Neu81].

Definition 3.19. Let Y be a closed graph manifold (see Definition 3.10). A Waldhausen link is a
pair (Y, L) where L is a disjoint union of Seifert fibers in some Seifert pieces of Y .

So a plumbing graph with arrows can be interpreted as a Waldhausen link (Y,L) (recall 3.11).

Remark 3.20. We assume in this work that Y is oriented and that the fibers of each Seifert
piece are also oriented, so this gives an orientation to each connected component Lk of L. Observe
that we can always invert the orientation of the fibers of a Seifert piece Yn if we also invert the
orientation on the base space in order to keep global orientation of the manifold.

Using Lemma 3.13 we are able to codify the topology of a graph manifold with another kind
of graph: the Waldhausen graph. . Although it differs from conventions of [Wal67], it contains
equivalent information.

Let (Y,L) be a Waldhausen link. Suppose that we are given a Waldhausen decomposition
Y =

⋃
n Yn in Seifert pieces. We are also given a framing of each boundary torus of each Seifert

piece and a gluing matrix for each separating torus.
We define G(Y,L) as follows. Let N be the subset of nodes, it has an element for each Seifert

piece in the given Waldhausen decomposition. Let A be the set of arrowheads, it has an element
for each connected component of L. Then G(Y,L) has as vertex set N t A. It has an edge e
between two vertices for each separating torus in the Waldhausen decomposition, also attach an
edge to a vertex in N for each component of L in that Seifert piece and for each special fiber in
that Seifert piece. We give the edges an orientation: for an edge between two nodes, we choose
any of the two orientations and for an edge stemming from of a node (corresponding to special
fiber or a component of a link) we assign the orientation that goes out of the node.

The graph G(Y, L) has the following decoration:

(1) Let e be an oriented edge.

(i) Suppose that e corresponds to a torus connecting the node n1 to the node n2. Let
si, fi be the section and fiber that form the framing of the node ni for i = 1, 2. Then
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f1 = bs2 + df2. We can interpret |b| as the intersection multiplicity f1 · f2 in the
boundary torus Te with its orientation as boundary of Y1. We define

αe = |f1 · f2|, εe = sign(f1 · f2)
we define βe as the unique integer satisfying αes1 +βef1 = εef2. Note that if we denote
by e′ the edge e with the opposite orientation, the number αe does not change but we
get a β′e that satisfies βeβ′e ≡ 1 mod α.
There exists up to homology a unique choice of sections s1, s2 such that the invariants
are normalized, i.e 0 ≤ βe, β

′
e < αe. We weight the edge e by the normalized triple

(αe, βe, εe). If the sign is omitted we assume it to be 0.
(ii) Suppose now that e corresponds to a Seifert fiber. It has thus associated a well-defined

normalized Seifert pair (α, β). This is the weight that we put to this edge.
(iii) If e corresponds to a component of the link, we assign to it the normalized Seifert pair

of the component of the link seen as a Seifert fiber of Y .

(2) Each node n ∈ N has an genus weight gn which corresponds to the genus of the base space
of the Seifert manifold. It also has as weight the Euler number b. This number can be
computed using the method of Proposition 3.17 as follows. Orient all edges as going out
of n. Now consider the unnormalized Seifert invariants (the Seifert invariants computed
directly from the given basis at each boundary torus). We interpret all these Seifert pairs as
Seifert invariants of fibers of Yn. Then we apply the method Proposition 3.17 to normalize
the invariants at the cost of introducing a new special fiber (1,−b) and b is the corresponding
Euler weight.

It is clear that given a graph with the weights as above, we can recover a 3-dimensional manifold
which is a graph manifold.
3.21. Observe that plumbing graphs can be considered as a special case of Waldhausen graphs in
which all the edges have the weight (1, 0, εe) and all the Seifert pieces have no special fibers. By,
using Lemma 3.13, we can produce a plumbing graph from a Waldhausen graph. The plumbing
graph will have a node for each node in N (with the same decoration) and a bamboo for each in
G(Y,L).

If εe = +1, then the edges of the bamboo corresponding to e are positive. If εe = −1, then one
(or any odd number) of the edges are given a negative sign.

Furthermore, they share the same set of arrowhead vertices A. Corresponding to eq. (4.18),
we find for any v ∈ V

− bvSv +
∑
e

εeSw = 0 ∈ H1(Yn,Z), (3.22)

where the sum ranges over edges adjacent to v, and w is the other vertex adjacent to that edge.
Example 3.23. Here we see an example of a plumbing graph and a Waldhausen graph repre-
senting diffeomorphic 3-manifolds. The translation from one to the other can be extracted from
Lemma 3.13.

−2

−2

−2

−2−3

−3

(7, 3)

−2

2

−5

(11, 2)

(3, 1)

−2

2
5

−6

(6, 1)

(9,−5)
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Chapter 4

Graph manifolds fibered over the
circle

This chapter depends on Chapter 3.
Graph manifolds were introduced in Definition 3.10 as those manifolds that can be encoded

by a plumbing graph. In this chapter we study fibrations of graph manifolds over the circle and
how to encode this information in a combinatorial way. All of this material is known and there are
several references on the topic. See for example [Pic01, Neu97, LP05]. However, for the sake of
completeness and to fix conventions for Chapter 11 we work out an exposition of these ideas here
and provide with proofs for those results for which we could not find an appropriate reference.

The chapter is divided in three sections. In the first section we study horizontal surfaces of
Seifert manifolds with non-empty boundary which is the easiest case. In the second section we
fully generalize to the case of horizontal open books in closed graph manifolds. In the last section
we explain how to obtain the conjugacy and isotopy invariants of the monodromy of a horizontal
open book from the combinatorial data that encodes the horizontal open books. This last section
is the most useful for Section 12.1.

4.1 Horizontal surfaces in Seifert manifolds

In this section, we study and classify horizontal surfaces of Seifert fiberings up to isotopy. We
point out [Hat07, Proposition 2.2] which says that horizontal surfaces always exist on a Seifert
manifold with non-empty boundary and that horizontal surfaces exist in a closed Seifert manifold
if and only if its orbifold Euler number is 0.

We consider only Seifert manifolds that are orientable with orientable base space and with
non-empty boundary in this section. Let s : Y → B be a Seifert fibering of a manifold Y with
non-empty boundary and Seifert invariants (g, r, (α1, β1), . . . , (αk, βk)).
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Chapter 4 Graph manifolds fibered over the circle

Definition 4.1. Let H be a surface with non-empty boundary which is properly embedded in Y
i.e. H ∩ ∂Y = ∂H. We say that H is a horizontal surface of Y if it is transverse to all the fibers
of Y .

Horizontal surfaces in a orientable Seifert manifold with orientable base space are always
orientable since the map s restricted to the horizontal surface is a branched cover over the base
space. Therefore, by our assumptions, only orientable horizontal surfaces appear in this work.

Definition 4.2. Let H(Y ) be the set of all horizontal surfaces of Y , we define

H(Y ) := H(Y )/ ∼

where two elements H1, H2 ∈ H(Y ) are related H1 ∼ H2 if their inclusion maps are isotopic.

Let n := lcm(α1, . . . , αk). We consider the action of the subgroup of the unitary complex
numbers given by the n-th roots of unity cn := {e2πim/n} with m = 0, . . . , n− 1 on the fibers of Y
. The element e2πim/n acts on a typical fiber by a rotation of 2πm/n radians and acts on a special
fiber with multiplicity αi by a rotation of 2πmαi/n radians.

We quotient Y by the action of this group and denote Ŷ = Y/cn the resulting quotient space.
By definition, the action of cn preserves the fibers and is effective. The manifold Ŷ is then a Seifert
manifold where we have killed the multiplicity of all the special fibers of Y . Hence it is a locally
trivial S1-fibration over B and since ∂B 6= ∅, it is actually a trivial fibration so Ŷ is diffeomorphic
to B × S1.

Let π : Y → Ŷ be the quotient map induced by the action of cn. Observe that Ŷ , seen as a
Seifert fibering with no special fibers, has the same base space as Y because the action given by
cn preserves fibers. In particular we find the following commutative diagram

Y Ŷ

B

π

s
ŝ

(4.3)

Where s (resp. ŝ) is the projection map from the Seifert fibering Y (resp. Ŷ ) onto its base
space B.

Definition 4.4. Let H be a horizontal surface in Y . We say that H is well embedded if it is
invariant by the action of cn.

A horizontal surface H defines a linear map H1(Y ;Z)→ Z by considering its Poincaré dual. If
H intersects a generic fiber m times, then it intersects a special fiber with multiplicity α, m/α ∈ Z
times (in particular m is a multiple of n). This is because a generic fiber covers that special
fiber α times. Hence, by isotoping any horizontal surface, we can always find well-embedded
representatives Ĥ ∈ [H].

Remark 4.5. Observe that if H and and H ′ are two well-embedded surfaces with [H] = [H ′],
then we can always find a fiber-preserving isotopy h that takes the inclusion i : H ↪→ Y to an
homeomorphism h(·, 1) : H → H ′ such that h(H, t) is a well-embedded surface for all t. This helps
us prove the following:

Lemma 4.6. There is a bijection π] : H(Y )→ H(Ŷ ) induced by π.
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Proof. Let [H] ∈ H(Y ) and suppose that H ∈ [H] is a well-embedded representative. Then clearly
π(H) ∈ H(Ŷ ). IfH ′ is another well-embedded representative of the same class, then by Remark 4.5
we have that [π(H)] = [π(H ′)] in H(Ŷ ). Hence the map π]([H]) := [π(H)] is well defined.

The map π] is clearly surjective because π−1(Ĥ) is a well-embedded surface for any horizontal
surface Ĥ ∈ H(Ŷ ) and hence π]([π−1(Ĥ)]) = [Ĥ].

Now we prove that the natural candidate for inverse π−1
] ([Ĥ]) := [π−1(Ĥ)] is well-defined. Let

[Ĥ] ∈ H(Ŷ ) with Ĥ ∈ [Ĥ] a representative of the class. Let H := π−1(Ĥ). If [Ĥ] = [Ĥ ′] for some
Ĥ ′ in H(Ŷ ) then [π−1(Ĥ ′)] = [π−1(Ĥ)] by just pulling back the isotopy between Ĥ and Ĥ ′ to Y
by the map π. Hence the map is well defined. By construction, it is clear that for any H ∈ H(Y )
we have that π−1

] (π]([H]) = [H] so we are done.

The objective of this section is to study H(Y ) but because of Lemma 4.6 above, it suffices to
study H(Ŷ ).

Fix a trivialization Ŷ ' B × S1 once and for all. We observe that since ∂B 6= ∅, the surface B
is homotopically equivalent to a wedge of µ = 2g+ r− 1 circles, denote this wedge by B̃. Observe
that H(Y ) is in bijection with multisections of B̃ × S1 → B̃ up to isotopy. Multisections are
multivalued continuous maps from B̃ to B̃ × S1.

Lemma 4.7. The elements in H(B̃ × S1) are in bijection with elements of

H1(B̃ × S1;Z) = H1(B̃;Z)⊕ Z

that are not in H1(B̃;Z) ⊕ {0}. Oriented horizontal surfaces that intersect positively any fiber of
B̃ × S1 are in bijection with elements of H1(B̃;Z)⊕ Z>0.

Proof. We have that H1(B;Z)⊕ Z = Zµ ⊕ Z. Take an element

(p1, . . . , pµ, q) = k((p′1, . . . , p′µ, q′)) ∈ Zµ × Z

with q 6= 0 and (p′1, . . . , p′µ, q′) irreducible (seeing Zµ × Z as a Z-module). Let p′j
q′ = kjp

′′
j

kjq′′
with

p′′j /q
′′ an irreducible fraction. Consider in each S1

k × S1, kj disjoint copies of the closed curve of
slope p′′j /q′′. We denote the union of these kj copies by H̃j . We observe that H̃j intersects C in
kjq
′′ = q′ points for each j. We can, therefore, isotope the connected components of each H̃j so

that
⋃
j H̃j intersects C in just q′ points. We do so and consider the set

⋃
j H̃j . The horizontal

surface H̃ of B̃ × S1 associated to k((p′1, . . . , p′µ, q′) is k disjoint parallel copies of
⋃
j H̃j .

On the other direction, given an element [H] ∈ H(B̃ × S1). Let [H] denote also the class of
any horizontal surface in H1(B̃ × S1;Z). Then q = [H] · C and pi = [H] · [S1

i × {0}]. That is, the
corresponding element in H1(B;Z)⊕ Z is the Poincaré dual of the class of H in the homology of
B̃ × S1.

Lemma 4.8. H̃ is connected if and only if the element (p1, . . . , pµ, q) is irreducible in H1(Ŷ ;Z) '
H1(B̃;Z)⊕ Z.

Proof. We know that by construction H̃ ∩C are q points. It is enough to show that these q points
lie in the same connected component since any other part of H̃ intersects some of these points. We
label the points cyclically according to the orientation of C. So we have c1, . . . , cq ∈ C. We recall
that S1

j × S1 ∩ H̃ is formed by kj parallel copies of the closed curve of slope p′j/q′ with
kjp
′
j

kjq′
= pj

q .

31



Chapter 4 Graph manifolds fibered over the circle

Hence the point xi is connected by these curves with the points ci+tkj mod q. Since (p1, . . . , pµ, q)
is irreducible then gcd(p1, . . . , pµ, q) = 1 and hence gcd(k1, . . . , kµ) = 1. Therefore the equation

i+ t1k1 + · · ·+ tµkµ = j mod q

admits an integer solution on the variables t1, . . . , tµ for any two i, j ∈ {1, . . . , q}. This proves that
the points ci and cj are in the same connected component in H̃.

Conversely if the element is not irreducible, then (p1, . . . , pµ, q) = k(p′1, . . . , p′µ, q′) for (p′1, . . . , p′µ, q′)
irreducible and k > 1. Then, by construction, H̃ is formed by k disjoint copies of the connected
horizontal surface associated to (p′1, . . . , p′µ, q′)

Handy model of a Seifert fibering
We describe a particularly handy model of the Seifert fibering that we use in Chapter 11. The
idea is taken from a construction in [Hat07]. For each i = 1, . . . , k let xi ∈ B be the image by
s : Y → B of the special fiber Fi. We pick one boundary component of the base space and denote
it by L. For each i = 1, . . . , k pick an arc li properly embedded in B and with the end points in L
(i.e. with li ∩ L = ∂li) in such a way that cutting along li cuts off a disk Di that contains xi and
no other point from {x1, . . . , xk}. We pick a collection of such arcs l1, . . . , lk pairwise disjoint. We
define

B′ := B \
⊔
i

int(Di)

where int(·) denotes the interior. See Figure 4.9 below and observe that B andB′ are diffeomorphic.

x1

x2

x3

D1

D2

D3

Figure 4.9: We see the base space B of a Seifert manifold. It has genus 3 and 4 boundary components.
The 3 points are the image of the special fibers by the projection s and if we cut along the three red arcs,
we get the surface B′.

Let Y ′ := s−1(B′). Since Y ′ contains no special fibers and ∂B′ 6= ∅ then Y ′ is diffeomorphic
as a circle bundle to B′ × S1. Recall that s−1(Di) is a solid torus of type (pi, αi) with piβi ≡ 1
mod αi (see Lemma 3.7).

Summarizing, the handy model consists of:

i) A system of arcs l1, . . . , lk as explained.

ii) A trivialization of Y ′, that is an identification of Y ′ with B′ × S1.

iii) Identifications of s−1(Di) with the corresponding model Tpi,αi for each i = 1, . . . , k.
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Remark 4.10. Let Ai be the vertical annulus s−1(li). A properly embedded horizontal disk
D ⊂ s−1(Di) intersects Ai in αi disjoint arcs by definition of the number αi. Since a horizontal
surface H intersects each typical fiber the same number of times we get that H must meet each
fiber t · lcm(α1, . . . , αk) = t · n times for some t ∈ Z>0. If a horizontal surface meets t · n times a
typical fiber, then it meets t · n/αi times the special fiber Fi.

Lemma 4.11. There is a bijection between H(Y ) and HS(Y ) := {γ ∈ H1(Y ;Z) : γ([C]) 6= 0}
where C is a generic fiber of Y .

Proof. Clearly, an element [H] ∈ H(Y ) can be seen as the dual of a 1-form γ with γH(C) 6= 0.
To see that there is a bijection, take a handy model for Y (we use notation described there).

Then we observe that given a γ ∈ HS(Y ), it restricts to a 1-form in H1(Y ′;Z). The manifold Y ′ is
diffeomorphic to a product, so by Lemma 4.7, there is a horizontal surface inH(Y ′) representing the
restriction of γ to Y ′. It also restricts as a 1-form in H1(s−1(B);Z) where we recall that s−1(B) is
a disjoint union of tori, each containing a special fiber of Y . If γ([C]) = n then, γ([Fi]) = n/αi ∈ Z
so we can see the dual of γ|s−1(B) as an union of n/αi disks in each of the tori s−1(Di) for all i.
Each of these disks intersects αi times the annulus s−1(li). So we can glue the horizontal surface
represented by γ|Y ′ with these disks to produce a horizontal surface in all Y . By construction, this
horizontal surface represents the given γ ∈ H1(Y ;Z).

Lemma 4.12. Let Ĥ be a horizontal surface in Ŷ , that is, Ĥ ∈ H(Ŷ ) and let H := π−1(Ĥ).
Then H is connected if and only if Ĥ is connected.

Proof. If H is connected, then so is Ĥ because π is a continuous map.
Suppose now that Ĥ is connected. If π−1(Ĥ) is not connected, then it is formed by parallel

copies of diffeomorphic horizontal surfaces. Each of them is sent by π onto Ĥ and each of them
represents the same element in HS(Y ). But, by Lemma 4.11 HS(Y ) is in bijection with H(Y )
which, by Lemma 4.6, is in bijection with H(Ŷ ). So we get to a contradiction.

By construction, we have established the 1 : 1 correspondences

HS(Y )←→ H(Y )←→ H(Ŷ )←→ H1(B;Z)⊕ Z \H1(B;Z)⊕ {0} (4.13)

Where the first correspondence is Lemma 4.11, the second is Lemma 4.6 and the last one is
Lemma 4.7.

Actually if we fix an orientation on the manifold and the fibers and we restrict ourselves to
oriented horizontal surfaces that intersect positively the fibers of Y , these are parametrized by
elements in H1(B;Z) ⊕ Z>0. From now on we restrict ourselves to oriented horizontal surfaces
H with H · C > 0, that is, those whose oriented intersection product with any typical fiber is
positive. Also the fibers are assumed to be oriented. This orientation induces a monodromy on
each horizontal surface.

Remark 4.14. Let Σ be a surface with boundary and φ : Σ→ Σ a periodic automorphism and let
Σφ be the corresponding mapping torus which is a Seifert manifold. The manifold Σφ fibers over
S1 and we can see Σ as a horizontal surface of Σφ by considering any of the fibers of f : Σφ → S1.
Now let Σφ be the orbit space of Σ which is also the base space of Σφ. Let m be the lcm of
the multiplicities of the special fibers of the Seifert fibering and let Σφ/cm be the quotient space
resulting from the action of cm on Σφ. We observe, as before, that Σφ/cm is diffeomorphic to
Σφ × S1 but there is not a preferred diffeomorphism between them. A trivialization is given by a
choice of a section of Σφ/cm → Σφ.
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Let [S1], . . . , [Sµ] be a basis of the homology group H1(Σφ;Z) where each Si is a simple closed
curve in Σφ. Let C be any fiber of of Σφ/cm. Let w, ŵ : Σφ → Σφ/cm be two sections, then
we have two different basis of the homology of H1(Σφ/cm;Z) induced by these two sections. For
instance

{[w(S1)], . . . , [w(Sµ)], [C]} and {[ŵ(S1)], . . . , [ŵ(Sµ)], [C]}.
Let Σ = f−1(0) be the horizontal surface that we are studying and let Σ̂ := π(Σ) where π is the
quotient map Σφ → Σφ/cm. Then Σ̂ is represented with respect to the (duals of the) two basis
by integers (p1, . . . , pµ, q) and (p̂1, . . . , p̂µ, q) respectively and pi ≡ p̂i mod q for all i = 1, . . . , µ
because a section differs from another section in a integer sum of fibers at the level of homology.

So the numbers p1, . . . , pµ are well defined modulo Zq regardless of the trivialization chosen
for Σφ/cm. Also by the discussion above, we see that if we fix a basis of H1(B;Z), then all the
elements of the form (p1 + n1q, . . . , pµ + nµq, q) represent diffeomorphic horizontal surfaces with
the same monodromy. That there exists an diffeomorphism of Y preserving the fibers that sends
H1 to H2 comes from the fact that on a torus S1 × S1, there exist a diffeomorphism preserving
the vertical fibers {t} × S1 that sends the curve of type (p, q) to the curve of type (p + kq, q) for
any k ∈ Z: the k-th power of a left handed Dehn twist along some fiber {pt} × S1 that is different
from C.

4.2 Horizontal open books in graph manifolds.

In this section we review some theory about graph manifolds and their fibrations over the circle.
The main result in this part is Proposition 4.21 which classifies horizontal fibrations of link

complements by those cohomology classes which do not vanish on generic fibers in Seifert pieces.
On one hand, this statement is proved in [EN85] when Y is an integral homology sphere. It is
proved there as well that a homotopy class in [Y, S1] contains at most one fibration. A criterion is
also given in [Neu97] for a graph manifold to fiber over S1 and have a horizontal surface. On the
other hand, the results of [Pic01] provide existence of fibrations of a link complement Y \ L, by
constructing Y \L as the mapping torus of a surface automorphism. For the sake of completeness,
we state and prove this result which helps us clarify the setting used in Sections 12.1 and 12.2.
Definition 4.15. We say that L is a fibered link if there exists a locally trivial fibration f :
Y \ L→ S1 and for each connected component Lk ⊂ L there exists a tubular neighborhood Uk and
a trivialization ρk : Uk → D2 × S1 such that the following diagram commutes

Uk \ Lk (D2 \ {0})× S1

S1 S1

ρk

f g

id

(4.16)

where g(z, t) =
(
z
|z|

)mk
· tnk .

We call mk the multiplicity of the component Lk, it coincides with the intersection number of
a fiber f−1(t) and a meridian ∂ρ−1

k (D2 × {t}) around Lk. When mk = +1 for all the components
in L, we call f an open book decomposition of Y . We note that nk is determined modulo mk.

If the fibers f−1(t) are transverse to the Seifert fibers of each Seifert piece of Y \ L, then we
say that it is a horizontal fibration for the pair (Y,L). And when mk = +1 for all the components
in L we say that it is a horizontal open book.
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4.2.1 Waldhausen graphs and horizontal surfaces
Let Y be a closed oriented graph manifold and let L ⊂ Y be a Waldhausen link (recall Defini-
tion 3.19). Thus, we have Y = ∪n∈NYn, where each Yn is a Seifert manifold. Decompose L into
connected components as L = ∪a∈ALa. For each a ∈ A, we have an n(a) ∈ N so that La ⊂ Yn(a)
is a Seifert fiber.

Let Σn be a horizontal surface (a surface transverse to each Seifert fiber and such that Σn ∩
∂Yn = ∂Σn) in Yn \ L. Such a surface exists, unless Yn is a closed Seifert manifold, L = ∅ and
the orbifold Euler number is nonzero (recall [Hat07, Proposition 2.2] ). Let Sn be a general Seifert
fiber of Yn.

The intersection number between Sn and Σn is independent of the general Seifert fiber Sn,
call this number mn. With a correct orientation, we can assume that mn > 0 at the cost of
introducing − signs in the corresponding plumbing/Waldhausen graph (this is done by changing
the orientation on the fiber at the same time that we change the orientation on the base space of
the manifold). Orient Σn ∩ Te as the boundary of Σn. Orient any edge adjacent to n as going out
of n. We find (Σn ∩ Te, Sn)Te = mn. We use this notation for intersections of homology classes to
specify which is the ambient space for the intersection.

Remark 4.17. In the setting of pseudo-periodic automorphisms arising from mixed tête-à-tête
graphs that are defined in Chapter 9, we can safely assume (as we will see) that εe = +1 for every
edge in the plumbing graph. By assuming that both the multiplicities mn and the signs εe are
positive, we are only considering horizontal surfaces whose monodromy has only positive fractional
Dehn twist coefficients and negative screw numbers. This is derived a posteriori from computation
in Lemma 4.24.

Also we can assume that at least some Lv ⊂ L has mv = +1. This assures that we are in the
case of ((1) and (2) ) that allow us to use Theorem 10.7 in order to model the monodromy by a
mixed tête-à-tête graph.

We find that Σn ∩ Te is the sum of −mnεeSn′/αe and some multiple of Sn. Let NL be an
open tubular neighborhood around L in Y . Since ∂(Σn \NL) = ∪eΣn ∩ Te, there exists a number
en ∈ Q so that

enSn +
∑
e

εe
αe
Sn′ = 0 ∈ H1(Yn;Z), (4.18)

where e ranges over oriented edges going from n to any n′. Since mn 6= 0, the fiber Sn does not
represent a torsion element of H1(Yn;Z), and so en is well defined by this equation. We observe
that en is the orbifold Euler number associated with Yn by interpreting the Seifert invariants of
edges as Seifert invariants of fiber of Yn. Compare with the expression

en = −bn +
∑
e

βe/αe (4.19)

where bn is the Euler weight of the central node of a star-shaped plumbing graph representation
of Yn.

We define the orbifold intersection matrix Io by setting

Io
n,n = en, Io

n,n′ =
∑
e

1/αe n 6= n′,

where the sum runs over edges connecting n and n′. In the case of a plumbing graph, the orbifold
intersection matrix is simply called the intersection matrix and is denoted by I. This is an integral
matrix.
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Remark 4.20. Homotopy classes of maps Y \ L → S1 are in bijection with H1(Y \ L;Z). It
follows from the universal coefficient theorem that H1(Y \ L;Z) = H1(Y \ L;Z)∨. This bijection
[Y \ L, S1] → H1(Y \ L;Z)∨ is realized by sending f : Y \ L → S1 to f∗ : H1(Y \ L;Z) →
H1(S1;Z) = Z. The associated multiplicities are defined as mw = f∗([Sw]) for any w ∈ W.

Note that if the orbifold intersection matrix Io is invertible, then eq. (4.18) shows that the
family (mn)n∈N is determined by (ma)a∈A.

Proposition 4.21. Let γ : H1(Y \ L;Z) → Z be a linear map. The corresponding element of
[Y \L, S1] contains a horizontal fibration if and only if, with notation as in Remark 4.20, mn 6= 0
for all n ∈ N . In this case, the fibration is unique up to isotopy.

Before proving the proposition, we state the following lemma.

Lemma 4.22. Let (Y, L) be a Waldhausen link with plumbing graph Λ. Let E = Y/ ∼ be the
quotient space under the finest equivalence relation ∼ so that any Seifert fiber is contained in an
equivalence class. Define the group K as the set of formal sums as in the left hand side of eq. (3.22).
We then have an exact sequence

0→ K → Z 〈Cv|v ∈ V〉 → H1(Y \L;Z)→ H1(E;Z)→ 0

Furthermore, H1(E;Z) is a direct sum of free groups HG(Y,L) and Hn, n ∈ N , where

• Hn = Hn(En/ ∼;Z), where En = Yn/ ∼ is the image of Yn in E. We note that this is
an rn-punctured surface of genus gn where rn is the number of components of L contained
in Yn. We note that Hn is contained in the image of H1(Yn;Z) via the inclusion and that
rkHn = 2gn + max{rn − 1, 0}.

• HG(Y,L) = H1(G(Y,L);Z), the map H1(Y \L;Z)→ HG(Y,L) is obtained by collapsing Y \L
onto G(Y, L) in the obvious way.

Proof. This sequence is in [Ném00, Proposition 2.18].

Proof of Proposition 4.21. In the case when L is a union of fibers in a Seifert manifold, this is
proved in Section 4.1. The general case then follows from [EN85, Theorem 4.2] We provide here a
proof which follows [EN85, Theorem 4.2] but does not depend on some deep theorems cited there
due to the horizontal assumption.

Let HFib(Y,L) be the set of horizontal fibrations of the complement Y \L. LetH ⊂ H1(Y \L;Z)
be the set of cohomology classes γ satisfying 〈γ, Sn〉 6= 0 for all n ∈ N . If f : Y \ L → S1

is horizontal, then each fiber is transverse to the boundary of the Seifert pieces of Y \ L. In
particular, f restricted to any Seifert piece is a fibration. It follows from the classification given
in Section 4.1 that the general fiber has nonzero intersection with any fiber of f , i.e. mn 6= 0. In
particular, the correspondence f 7→ f∗ induces a map HFib(Y,L) → H. We will construct a map
H → HFib(Y, L), γ 7→ fγ and show that the two maps are inverse to each other.

Let γ ∈ H and set γn = γ|Yn for n ∈ N . As mn 6= 0, we know that there exists a fibration
fn : Yn \ L → S1 satisfying fn,∗ = γn, unique up to isotopy. If T is a torus corresponding to an
edge connecting n and n′, then γn|T = γ|T = γn′ |T . It follows that we can isotope fn and fn′ in a
neighborhood around T to coincide on T , and to glue together to form a fibration f : Y \L→ S1.
The fibration fγ is obtained by a modification of f explained below.

Let A be a spanning tree for G(Y,L) and let EA be the set of edges in G(Y,L) not in A. For
each e ∈ EA, let ce be the unique simple circuit in G(Y, L) containing only e and edges in A and
let pe : S1 → Y \ L be a path visiting the vertices and edges of the circuit ce.
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We define fγ : Y \ L → S1 as follows. For any e ∈ EA, let Ne be a tubular neighborhood
around Te. Since the normal bundle of Te ⊂ Y is orientable, it is trivial: Ne ∼= Te × [0, 1]; let
πe : Ne → [0, 1] be the projection. We can assume that the intersection Ne∩pe(S1) is a fiber of the
projection onto Te, with the orientations coinciding. Define he = pe,∗([S1]) ∈ H1(Y \ L;Z). Using
a C∞ function ψ : [0, 1]→ R, taking constant values 0, 1 in neighborhoods around 0, 1, respectively,
define

fγ = f ·
∏
e∈EA

e2πi(〈γ,he〉−f∗(he))ψ◦π,

where, outside Ne, the factor corresponding to e is understood to take the value 1.
It follows from Lemma 4.22 that the quotient ofH1(Y \L;Z) modulo the images ofH1(Yn\L;Z)

for n ∈ N is freely generated by the classes he for e ∈ EA. By construction, f∗, fγ,∗ and γ coincide
on these images. It then follows by the above modification of f that fγ,∗(he) = γ(he) for all e ∈ EA,
thus f∗,γ = γ.

Finally, we must show that, given an f ∈ HFib(Y, L), the maps f and ff∗ are isotopic. As
above, for all edges e in G(Y, L), the torus Te is transverse to all fibers of f . Then the restrictions
of f and ff∗ to any Seifert piece are horizontal. They are therefore, isotopic by Section 4.1,
since (ff∗)∗ = f∗. Thus, we may assume that f and ff∗ coincide outside ∪e∈EANe. Thus, up to
isotopy, we may assume that f/ff∗ equals 1 outside ∪eNe, whereas, for an oriented edge e, we
have f/ff∗ = e2πiteψ◦π on Ne for some te ∈ Z.

Let π be a map obtained by collapsing Yn \∪eNe to a point for all n ∈ N , as well as collapsing
the fibers of πe to points. We thus get a map π : Y \ L → G(Y,L). Since G(Y, L) is a graph
and ((f/ff∗) ◦ π)∗ = 0, there is an h : G(Y,L) × [0, 1] → S1 satisfying h(·, 0) = (f/ff∗) ◦ π and
h(·, 1) = 1. By multiplication with h, we obtain an isotopy between f and ff∗ .

4.3 Description of the monodromy

The previous section classifies horizontal open books on graph manifolds. However, this does not
give us a good understanding of the action of the monodromy on the pages of the open book.
This section is devoted to understand the monodromy and produce numerical data that help us
construct the desire mixed tête-à-tête graph in Section 12.1.

In [LP05, Lemma 3.1] I. Luengo and A. Pichon include a dictionary between horizontal fibra-
tions of Waldhausen links and Nielsen graphs. In this section we start with a horizontal open
book of a graph manifold and explain how to get the data of the pseudo-periodic diffeomorphism
corresponding to the monodromy in order to produce a mixed tête-à-tête graph whose mapping
torus recovers the original graph manifold.

The monodromy may be understood by getting a good grasp of:

i) The action of the monodromy on the periodic pieces, that is, the number of connected
components, the period and the non-trivial isotropy points of each orbit.

ii) The attaching of the different orbits along annuli.

iii) The screw numbers of the annuli connecting the periodic pieces.

iv) The fractional Dehn twist coefficients associated to the components Lv of the binding of the
open book.
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The above information allows us to give a model of the page and a pseudo-periodic automor-
phism of it in a canonical form. Then, we can apply the procedure described in the proof of
Theorem 10.7 to build a mixed tête-à-tête graph modeling the automorphism.

i) Periodic pieces

Let Yj be a Seifert piece. The map f |Yj induces an element (f |Yj )∗ of H1(Yj ;Z) that does not
vanish on a generic fiber. Hence we can apply the algorithms described in Chapter 11 to get a
description of the topology of the horizontal surface Σj and the monodromy acting on it.

ii) Attaching of orbits along annuli
In order to recover the topology of the page Σ we have to glue some boundary components of the
periodic pieces Σj constructed above.

We follow the notation of the second part of Proposition 4.21. For each periodic orbit Σj
choose a connected component and denote it by Σj,1. Label the rest according to the action of the
monodromy by Σj,2, . . . ,Σj,αj .

Let A be a spanning tree of G(Y, L). First we construct the part of the page Σ contained in
the pieces of the spanning tree. For each edge e in A connecting vertices j, j′ there corresponds an
orbit of annuli Ae of the page Σ. This orbit of annuli is in a thickened torus Ne. Note that since
A is a tree, j 6= j′ and in particular this orbit is not amphidrome.

We glue a boundary component of Σj,1 in Ne to a boundary component of Σj′,1 in Ne. We
glue the rest of boundary components in that torus equivariantly by the monodromy. Since A is a
tree, different choices produce the same surface.

Let EA be the set of edges in G(Y, L) not in A. For each edge e in EA, let ce be the circuit in
G(Y,L) that only intersects EA in e. By choosing an inverse to the last arrow of the exact sequence
in Lemma 4.22 we get an splitting

H1(Y \ L;Z) ' H1(E;Z)⊕ Z 〈Cv|v ∈ V〉
K

.

Which also by Lemma 4.22 factorizes in

HG(Y,L) ⊕
Z 〈Cv|v ∈ V〉

K

⊕
n∈N

Hn

Then f?(ce) is a number ne which, up to the choice of splitting, is well defined modulo the
greatest common divisor of αj′′ for j′′ on the circuit ce. Then, a boundary component of Σj,1 in
Ne is glued to a boundary component of Σj′,1+ne .

Remark 4.23. The number ne contains equivalent data as the action of the monodromy in the
partition graph in [MM11] or the invariant ω(h) in [Pic01].

This completes the construction of the page Σ.

iii) Screw numbers
We recall that we can easily get the plumbing graph Λ from the Waldhausen graph G(Y, L).
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Lemma 4.24. Let n, n′ ∈ N be joined by an edge e in G(Y, L). Let αe/βe = [b1, . . . , bs] be the
negative continued fraction expansion. Define m0,m1, . . . ,ms+1 by

m0 = mn, m1 = βemn +mn′

αe
, mi−1 − bimi +mi+1 = 0 i = 1, . . . , s.

The screw number re associated to the edge e in the Nielsen graph of φ is

−d2
s∑
i=0

1
mimi+1

.

where d = gcd(m0,m1) which is equal to gcd(mi,mi+1) for all i.

Proof. Let A1, . . . , Ak be the annuli in Σ corresponding to the edge e and let v1, . . . , vs be the
vertices on the bamboo joining n, n′ in Λ. The annulus Aj can be split up into a union of annuli
as

Aj = A0,1
j ∪A

1
j ∪A

1,2
j ∪A

2
j ∪ · · · ∪Asj ∪A

s,s+1
j .

Here, Ai,i+1
j corresponds to the edge joining vi and vi+1, and Aij is the complement of these annuli

inside the plumbed piece corresponding to vi. We can assume that φ is truly periodic on the pieces
Aij , so re is the sum of screw numbers associated to the edges connecting vi and vi+1 (where we
set v0 = n and vs+1 = ms+1). This reduces the proof to the case when αe = 1 and s = 0.

Denote by φ′ the restriction of φk to A1. It follows from Definition 2.44 that φ and φ′ have
the same screw number on A0,1

1 . This reduces the proof to the case when gcd(m0,m1) = 1.
The annulus A = A0,1

1 is the Milnor fiber of the non-isolated plane curve singularity given by
xm0ym1 = 0. Let F be this Milnor fiber and let Fsing be the singular Milnor fiber. In fact, define
the total space of the singular Milnor fibration as the closure of the set{

(z, x) ∈ S1 × S3 ∣∣ f(x)/|f(x)| = z
}

The singular fibration is the first projection. Furthermore, the singular fibration contains the trivial
fibration with fiber Lf (the link) given by f(x, y) = xm0ym1 = 0. We get the singular monodromy,
well defined up to homotopy, hsing : Fsing → Fsing, satisfying hsing|Lf = idLf .

Note that the oriented real blowup of the singular fiber space along Lf is the Milnor fiber. The
singular monodromy lifts to a monodromy h on the Milnor fiber. Although this monodromy is not
the identity on the boundary, it gives a well defined screw number. In fact, this representative of
the monodromy coincides with φ on A = F .

Next, we describe the singular monodromy for the plane curve f(x, y) = xayb, assuming
gcd(a, b) = 1. Define an action of R on S3 by setting

t ∗ (x, y) = (e2πit|y|/ax, e2πit(1−|y|)/by), t ∈ R.

Note the similarity to the classical computation in Milnor’s book for weighted homogeneous poly-
nomials. Since this polynomial is weighted homogeneous for any weight, we can vary the weights.
This is done in order to guarantee that the action is trivial on the link Lf . The link consists of
points (x, y) where either coordinate vanishes. Note that we choose a Milnor ball of radius 1. It
follows that this action acts trivially on Lf . Furthermore, we have f(t ∗ (x, y)) = e2πitf(x, y). It
follows that the singular monodromy is obtained by acting by 1. We parametrize the Milnor fiber
by

[0, 1]× S1 → S3, (s, η) 7→ (ηbs, η−a(s− 1))√
s2 + (s− 1)2

.
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Writing r(s)−1 for the denominator, the action of t = ab on this image is

r(s)(η−bs, ηa(1− s)) 7→ r(s)(e2πi(1−s)bηbs, e2πiaη−a(1− s))
= r(s)((e−2πisη)bs, (e−2πisη)−a(1− s)),

i.e. (s, η) 7→ (s, e−2πisη), a right-handed Dehn twist. It follows that the screw number of φ is
−1/ab.

Remark 4.25. Note that the Lemma above recovers [MM11, Theorem 5.1 (5)], which is a number
theory result, by using a singularity theoretic point of view and a purely topological technique.

Observe that one can also apply the technique of the previous Lemma to part i). In fact, by
applying the lemma to an arm of the plumbing graph, we get

Corollary 4.26. Let m0,m1, . . . ,ms,ms+1 be the multiplicities of an arm of Λ corresponding to a
special fiber of a Seifert piece. Then, the corresponding rotation number of the non-trivial isotropy
orbit is

−d2
s∑
i=0

1
mimi+1

.

iv) Fractional Dehn twist coefficients at the boundary components fixed
by the monodromy
A Lv ⊂ L has mv = +1, so there exists a well defined representative of the monodromy fixing the
corresponding boundary component of the fiber near Lv. Then, it makes sense to compute the
fractional Dehn twist coefficient at that boundary component.

We observe that fractional Dehn twist coefficients can be seen as screw numbers. Let C be
a boundary component of a periodic part Σj the fiber. Suppose that φ|C = id. We can glue an
annulus A to this boundary component and extend φ by the identity to all the annulus. Then the
fractional Dehn twist of φ at C coincides with minus the screw number of φ between the periodic
piece A and the periodic piece Σj . Hence, from Lemma 4.24 we get the following

Corollary 4.27. Let m0,m1, . . . ,ms,ms+1 be the multiplicities of an arm of Λ ending at an
arrowhead (thus ms+1 = 1). Then, the corresponding fractional Dehn twist coefficient is

d2
s∑
i=0

1
mimi+1

.

By the fact that all multiplicities are positive and the edges have weight +1 (recall Re-
mark 4.17), we get that these fractional Dehn twist coefficients are positive which allows the
monodromy to be modeled by a mixed tête-à-tête graph as we will see in Chapter 9.
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Singularity theory

In this chapter we do a brief review of the concepts of singularity theory that we use in the
forthcoming parts. We do not attempt to make a comprehensive introduction here, but rather do
a quick overview of the concepts used and provide with references for all the results mentioned.

We do a local study of singularities of maps and sets locally in this work. So we treat with
function germs. Let

f : (Cn, 0)→ (C, 0)
be a holomorphic function germ. Let Vf := f−1(0) be the analytic set defined by f . We say that
f has a singularity at a point p ∈ Vf if all partial derivatives of f vanish at p, i,e if

∂f

∂zi
(p) = 0 for all i = 1, . . . , n.

When 0 ∈ Vf is the only singular point of a neighborhood of 0 ∈ Cn we say that f has an isolated
singularity at 0.

Let S2n−1
ε be the sphere of radius ε0 > 0 centered at 0. In [Mil68], Milnor proved that for ε0

small enough, the intersection Kε := S2n−1
ε ∩ Vf is a smooth manifold for all 0 < ε < ε0 and its

topology does not depend on ε. We call Kε the link of the singularity. Furthermore, in that same
reference Milnor proved his celebrated theorem. The following is the usual formulation:

Theorem 5.1 (Milnor’s fibration Theorem). Let f : (Cn, 0) → (C, 0) be a holomorphic function
germ having a singularity at 0 ∈ Cn. Then there exists a small ε0 > 0 such that for all 0 < ε ≤ ε0
the map

f

|f |
: S2n−1

ε \Kε → S1

is a locally trivial fibration.

Monodromy. Let F ↪→ E → B be a locally trivial smooth fibration with fiber F . Fix a base
point b ∈ B. There is a well-defined action of π1(B, b) on the mapping class group of F . The
image of π1(B, b) by this action is known as the geometric monodromy group. A sketch of the
construction of the monodromy goes as follows:
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(1) Let β : [0, 1] → B be a loop representing an element of π1(B). (So β(0) = β(1) = b). We
suppose that β is differentiable. The construction is very similar for piecewise differentiable
path.

(2) For each point x ∈ E. There is a well defined subspace of TxE which is, TxF , that is, the
tangent space to the fiber F at the point x. This gives a vector sub-bundle of the tangent
bundle TE. We choose another vector sub-bundle TH such that TxE ' TxF⊕TxH. That is,
we choose a vector sub-bundle that complements TF . This can always be done by pasting
local decompositions using a partition of unity. This horizontal vector bundle TH is not
unique and is some times called Ehresmann connection.

(3) Now we may use this connection to lift a parametrization of β to a homotopy ht : Fβ(0) 7→ E
such that for each t the map ht is a diffeomorphism from the fiber Fβ(0) over β(0) = b to
the fiber over β(t). The map h1 is a diffeomorphism from Fb to itself.

(4) It can be proved that homotopic paths give isotopic diffeomorphisms. And different con-
nections give as well isotopic diffeomorphisms. Hence, the action is well defined from the
fundamental group to the mapping class group.

We show now other versions of Theorem 5.1. In particular there is a formulation of this theorem
that is sometimes more useful:

Theorem 5.2 (Milnor fibration in the tube). Let f : (Cn, 0) → (C, 0) be a holomorphic function
germ having a singularity at the origin in Cn. Let δ0 > 0 be a positive number small enough so
that S2n−1 intersects transversally f−1(t) for all t with 0 < |t| ≤ δ0. Let Dδ ⊂ C be the disk of
radius δ < δ0 and Bε ⊂ Cn the closed ball of radius ε. Then

f |Bε∩f−1(S1
δ
) : Bε ∩ f−1(S1

δ)→ S1
δ

is a locally trivial fibration and is equivalent to the fibration in Theorem 5.1. The set Nε,δ :=
Bε ∩ f−1(S1

δ) is usually called the Milnor tube.

Note that the Milnor fiber in the above theorem is a compact manifold with boundary.
Milnor proved the above theorem in [Mil68] in the case when f has an isolated singularity. It

was Lê Dũng Tráng who proved the above theorem. Actually he proved it in [LDuT77] in a greater
generality:

Theorem 5.3 (Milnor-Lê fibration Theorem). Let X be an analytic set of an open neighborhood
of the origin in Cn. Let f : (X, 0)→ (C, 0) be a holomorphic function germ. Let Vf := f−1(0) be
as before. Let Bε denote the closed ball of radius ε in Cn centered at the origin and let D∗δ be the
punctured disk of radius δ in C. Then for ε > 0 small enough there exists δ > 0 small with respect
to ε such that

f : X ∩Bε ∩ f−1(S1
δ)→ S1

δ

is a locally trivial fibration. We call f−1(0)∩X ∩Bε the link of the Milnor-Lê fibration associated
with f .

Remark 5.4. Given an analytic space germ (X, 0) and an embedding of (X, 0) in (Cn, 0). Its link
is defined as the intersection of X and a small ball Bε ⊂ Cn centered at 0. The topological type
of the link does not depend neither on the embedding nor on n. So, in the previous theorem, the
topological type of the fibration depends only on X and on f .
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Remark 5.5. (a) If the singularity is isolated, then there exists a representative of the mon-
odromy that fixes the boundary pointwise. This is essentially because the Milnor fibration
on the tube trivializes near the boundary of the total space. So, when constructing the
connection, we may pick a particular cover by trivializing open sets where one of these open
sets contains the boundary of the (closure of the) Milnor fiber.
In this case, the monodromy gives a well-defined element of MCG+(F, ∂F ) .

(b) Observe that the base space of the Milnor fibration is a circle and its fundamental group is
isomorphic to Z. Hence, to give the monodromy group one only needs to give the action of
one generator of this group. What is usually called the monodromy, is the mapping class
induced by the the lifting of the loop parametrized by t 7→ e2πt.

Plane curve singularities
By taking n = 2 we restrict ourselves to the theory known as plane curve singularities. This is
a classical and very well understood topic in singularity theory. We refer to [BK86] which is a
canonical reference on this topic.

Let f : (C2, 0) → (C, 0) be a germ and susppose that we take a representative of it given a
convergent series of powers. We observe that f can be uniquely (up to multiplication by an unity)
described as a product of powers of irreducible germs f = fm1

1 · · · · · fmkk . When mi = 1 for all i,
we say that the germ is reduced. When also k = 1, we say that the germ is irreducible. Hence, by
definition, each fi is an irreducible germ and its set of zeros is called branch.

Puiseux series. Let f(x, y) be an irreducible polynomial with complex coefficients. We consider
the equation f(x, y) = 0 and think about the problem of solving the expression for y. Observe
that this problem, in general, does not have a solution in the space of polynomials with complex
coefficients, not even in the space of series with complex coefficients. However, if we allow fractional
exponents, then it is possible to express y as a series with complex coefficients and fractional
exponents (with bounded denominator) that is convergent in a neighborhood of 0. That is, the
equality

y = h(x) =
∞∑
k≥n

ckx
k/m

holds in a neighborhood of 0. Where n is the first non-zero coefficient and m is the bound of the
denominators. This series is called Puiseux expansion.

We use Puiseux series to codify the information of the equation f(x, y) = θ for small |θ| > 0.
Which, intersected with a sufficiently small ball center at the origin of C2, is the Milnor fiber (recall
Theorem 5.2). All the topological information of the series can be recovered from the exponents of
the non-zero coefficients. Which in turn, can be codified by pairs of co-prime numbers: the Puiseux
pairs. Actually we are interested in a subset of these pairs, called the characteristic Puiseux pairs
which are enough to recover the topology of the germ. Given a series we do the following to obtain
the characteristic Puiseux pairs. Take n1/m1 the irreducible fraction for n/m. The pair (n1,m1)
is called the first characteristic Puiseux pair. If gcd(m,n) = 1, then we have finished. Otherwise,
we have that m/m1 > 1. In this case, let

k2 := min{k : ck 6= 0 and k is not divisible by (m/m1)}

Take (n2/m2) the irreducible fraction for k2/(m/m1). The pair (n2,m2) is the second Puiseux
pair. If m/(m1m2) > 1 we iterate the process, whereas if m/(m1m2) = 1 the process ends here.
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After a finite number of steps, the algorithm ends and we get a sequence of pairs of co-prime
natural numbers

(n1,m1), . . . , (ng,mg)
which are the characteristic Puiseux pairs.

Surface singularities

These are singularities of analytic spaces that have generic dimension 2. See [N9́9] for more on
this topic.

Definition 5.6. Let f1, . . . , fk : (Cn, 0) → (C, 0) be a collection of holomorphic function germs.
We say that the germ (X, 0) := (Vf1∩· · ·∩Vfk , 0) is a surface singularity if the rank of the Jacobian
matrix (

∂fi
∂zj

)
i=1,...,k
j=1,...,n

is n− 2 at a any generic point. If the rank is also n− 2 at 0, this is actually a smooth germ. And
if the rank is less than n− 2 only at 0, we say that this is an isolated surface singularity.

If any bounded holomorphic function X \ {0} → C can be holomorphically extended to X, we
say that (X, 0) is a normal surface singularity.

Remark 5.7. It can be proved (see for example [Lau71]), that any normal surface singularity has,
at most, an isolated singularity. That is, it is either isolated or a smooth germ.

As we have seen in the previous section, there is a Milnor-Lê fibration theorem for holomorphic
map germs with isolated singularities in these spaces. In [NP07] the authors study criterions for
an automorphism of a surface to be the monodromy of the Milnor-Lê fibration of an holomorphic
function germ f : (X, 0) → (C, 0) defined on an isolated surface singularity. The following result
is contained in [NP07, Theorem 2.1]. Recall Definitions 3.19 and 4.15.

Theorem 5.8. Let (Y,L) be a Waldhausen link. Then the following two statements are equivalent
(1) (Y, L) has the structure of horizontal open book for some g : Y \ L → S1 and some power

of the monodromy φ : Σ → Σ is a composition of right-handed Dehn twists around disjoint
simple closed curves that include all boundary components.

(2) There exists a complex analytic structure on C(Y ) (the cone of Y ) with (C(Y ), 0) an isolated
surface singularity. And there exists a reduced holomorphic map germ f : C(Y )→ C whose
Milnor-Lê fibration realizes (Y, L), that is, the link of the Milnor-Lê fibration of f is L.

Remark 5.9. We make some clarifying observations to the previous theorem.

(a) If we start with (1), then the monodromy of the Milnor-Lê fibration that we get in (2)
coincides with the monodromy given in (1) and the singularity (C(Y ), 0) is normal.

(b) Given an isolated surface singularity (X, 0) and a reduced holomorphic map germ f :
(X, 0) → (C, 0), the monodromy of the Milnor-Lê fibration associated with f satisfies that
some power of it is a product of right-handed Dehn twists around disjoint simple closed
curves that include all boundary components.

Observation (a) can be extracted from [NP07]. Observation (b) follows from Grauert’s criterion
together with the computations of Section 4.3.
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Chapter 6

Tête-à-tête graphs

Chapter 1 and Chapter 2 (except last section) are the preliminaries for this chapter.
In this chapter, we introduce the main object of this work: tête-à-tête graphs. We essentially

follow [A’C10]. In particular, Definitions 6.2, 6.6 and 6.13 are contained in the cited work. We
also prove some basic properties of these objects that yield a comfortable setting for the rest of
the work. This chapter can be followed completely having read Chapter 1.

We start by adding more structure to a relative ribbon graph: we consider metric relative
ribbon graphs. A metric graph is given by a graph Γ and lengths l(e) ∈ R for every edge e ∈ e(Γ).
In an edge e, we take a homogeneous metric that gives e total length l(e). We consider the distance
d(x, y) on Γ given by the minimum of the lengths of the paths joining x and y. It is a complete
metric space. We denote a metric relative ribbon graph by (Γ, A, d) and when it is clear from
context we omit the distance d in the notation.

Definition 6.1. A walk in a graph Γ is a continuous mapping

γ : I → Γ,

from an interval I, possibly infinite, and such that for any t ∈ I there exists a neighborhood around
t where γ is injective.

Now we give the first definitions inherent to tête-à-tête graphs, following essentially [A’C10].
The notion of safe walk is central in this work. This is a purely graph theoretical definition.

Definition 6.2 (Safe walk). Let (Γ, A, d) be a metric relative ribbon graph. A safe walk for a point
p in the interior of some edge is a walk γp : R≥0 → Γ with γp(0) = p and such that:

(1) The absolute value of the speed |γ′p| measured with the metric of Γ is constant and equal
to 1. Equivalently, the safe walk is parametrized by arc length, i.e. for s small enough
d(p, γp(s)) = s.

(2) When γp gets to a vertex, it continues along the next edge in the given cyclic order.
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(3) If p is in an edge of A, the walk γp starts running in the direction prescribed by the orientation
of A (recall that this orientation is opposite to the orientation of A seen as boundary of Σ).
This is sometimes called the relative safe walk or the boundary safe walk.

An `-safe walk is the restriction of a safe walk to the interval [0, `]. If a length is not specified when
refering to a safe walk, we understand that its length is π.

The notion in (2) of continuing along the next edge in the order of e(v) is equivalent to the
notion of turning to the right in every vertex for paths parallel to Γ in Σ in A’Campo’s words in
[A’C10].

Following A’Campo notation, we treat mainly with π-safe walks. In Chapter 7 we make use of
safe walks of different lengths, that is why we introduce it in such a generality here.

Remark 6.3 (Safe walk via cylinder decomposition). Condition (2) in the previous definition is
equivalent to:

(2) the path γ admits a lifting γ̃p : R≥0 → ΣΓ in the cylinder decomposition of ΣΓ (see No-
tation 1.11), which runs in the opposite direction to the one indicated by the orientation
induced on Γ̃i seen as boundary of the cylinder Σ̃i.

Remark 6.4. In fact, from this viewpoint, a safe walk starting from p ∈ Γ is nothing else that
the image by gΓ of a negative arc-length parametrization of a circle Γ̃i (see Notation 1.11) starting
from a preimage of p. This extends Definition 6.2 to safe walks starting at any point p in the graph
Γ.

Each of the equivalent formulations of Property (2) of safe walks has its own virtues. The
first is purely described in terms of graphs and is more convenient for defining General tête-à-
tête homeomorphisms in Section 7.3. The second is more convenient to define Signed tête-à-tête
homeomorphisms in Chapter 7 and Mixed tête-à-tête graphs in Chapter 8.

Remark 6.5. Given a relative ribbon graph (Γ, A) with thickening (Σ, A), we make four obser-
vations in order to help fixing ideas:

(1) Every vertex v ∈ v(Γ) has as many preimages by gΓ as its valency e(v). These preimages
belong to certain Γ̃i ⊆ Σ̃i for certain cylinders Σ̃i which could occasionally be the same. An
interior point of an edge not included in A has exactly two preimages. An interior point of
an edge included in A has exactly one preimage.

(2) For every point p ∈ Γ and every oriented direction from p along Γ compatible with the
orientation of A there is a safe walk starting on p following that direction. This safe walk
admits a lifting to one of the cylinders Σ̃i.
More clearly:

(a) For p an interior point of an edge not belonging to A, that is for p ∈ Γ \ (v(Γ) ∪A),
only 2 starting directions for a safe walk are possible, corresponding to the two
different preimages of p by gΓ. We will denote the corresponding safe walks by γp
and ωp. If p is at the interior of an edge contained in A only one starting direction for
a safe walk at p is possible: the direction indicated by the orientation of A (opposite
to the orientation of A seen as boundary of Σ).

(b) For a vertex v, not belonging to A there are as many starting directions as edges in
e(v), and for any vertex v belonging to A, there are as many starting directions as
edges in e(v) minus 1.
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Definition 6.6 (Tête-à-tête property). Let (Γ, A, d) be a metric relative ribbon graph without
univalent vertices. We say that Γ satisfies the `-tête-à-tête property, or that Γ is an `-tête-à-tête
graph if:

• For any point p ∈ Γ\(A∪v(Γ)) the two different `-safe walks starting at p (see Remark 6.5),
that we denote by γp, ωp, satisfy γp(`) = ωp(`).

• For a point p in A \ v(Γ), the end point of the unique `-safe walk starting at p belongs to A.

If Σ is the regular thickening of the graph Γ and A denotes the corresponding union of boundary
components, we say that (Γ, A) gives a relative `-tête-à-tête structure to (Σ, (Γ, A)) or that (Γ, A)
is a relative `-tête-à-tête graph or spine for (Σ, (Γ, A)).

If A = ∅, we call it a pure `-tête-à-tête structure or graph.

Remark 6.7. Since by Remark 6.4 there are safe walks starting at any vertex the seemingly
stronger notion of the `-tête-à-tête property may be defined:

• For any point p ∈ Γ all the `- safe walks starting at p end at the same point.

• If p belongs to A \ v(Γ), the end point of the unique `-safe walk starting at p belongs to A.

Lemma 6.8 (Lemma and Definition). For an `-tête-à-tête graph (Γ, A, d), the following are true:

(1) The conditions stated in Remark 6.7 hold true.

(2) The mapping σΓ : Γ→ Γ defined by σΓ(p) = γp(`) is a homeomorphism. If p is a vertex, γp
denotes any `-safe walk starting at p.

Proof. A proof in terms of the description of safe walks via images of parametrizations of boundaries
of cylinders as in Remark 6.4 is easy: let

σ :
∐
i

Γ̃i →
∐
i

Γ̃i

be the homeomorphism which restricts to the metric circle Γ̃i to the negative rotation of amplitude
` (move each point to a point which is at distance l in the negative sense with respect to the
orientation). The tête-à-tête property implies that σ is compatible with the gluing gΓ at any point
which is not the preimage of a vertex. By continuity the compatibility extends to all the points.
The mapping σ descends to the mapping σΓ. This proves simultaneously both assertions.

However, for later use in the definition of general tête-à-tête homeomorphisms in Section 7.3,
we give below a proof using only the combinatorial description of a safe walk.

We note first that if q = γp(s) is an interior point of an edge, then we have the equality
γq(`) = γγp(`)(s).

Take a vertex v ∈ v(Γ). Let ε > 0 be smaller than ` and than half the length of any edge. For
any edge ei ∈ e(v) = {e1, ..., ek} take a sequence of points {yni }n of ei such that d(yni , v) = ε/n.
We have that d(yni , ymj ) = ε/n + ε/m if i 6= j because we have chosen ε small enough. We also
have that γyn

i
(ε/n+ ε/m) = ymi+1. Thus d(γyn

i
(`), γyn

i+1
(`)) ≤ ε/n+ ε/m. Then for every i = 1, ..., k

the Cauchy sequences {γyn
i

(`)}n converge to the same point u. Similarly the Cauchy sequences
{ωyn

i
(`)}n converge to the same point u′. By the tête-à-tête property we have the equality u = u′.

It is easy to observe that u is the image of all the safe walks starting at v. This proves the first
assertion.

We define σΓ(v) =: u. It is clear that with this definition σΓ is continuous and that u is a
common vertex of the images by σΓ of the edges ei.
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The inverse of σΓ for a point q ∈ σΓ(Γ \ v(Γ)) is the end of a walk of length ` starting at q
that when approaching a vertex v turns to the previous edge in the cyclic order of e(v). Note that
the tête-à-tête property of Definition 6.6 also holds for this type of paths whenever they start in
σΓ(Γ \ v(Γ)). So, we can do the same as in the first part of the proof and see that it extends to
the whole Γ and that it is continuous. Then, σΓ has a continuous inverse.

Remark 6.9. There is a special and easy case for π-tête-à-tête graphs: when Γ is homeomorphic
to S1. The thickening surface is in this case the cylinder. In this case the only possibilities for σΓ
are the identity or the π rotation (for the homogeneous metric on S1). Then Γ has total length of
2π/n for some n ∈ N.

Corollary 6.10. The homeomorphism σΓ has the following properties:

(1) It is an isometry.

(2) It preserves the cyclic orders of e(v) for every v ∈ v(Γ).

(3) It takes vertices of valency k > 2 to vertices of the same valency.

(4) It has finite order.

Proof. Point (1) follows from the proof of Lemma 6.8 because σΓ is a homeomorphism that is an
isometry restricted to the edges. Point (2) follows also from the proof. Point (3) is immediate
since σΓ is a homeomorphism.

To see that σΓ has finite order when it is not S1, we observe that σΓ induces a permutation
between edges and vertices of Γ′ and is an isometry. Then, it has finite order. When the graph is
homeomorphic to S1, it follows from Remark 6.9.

Corollary 6.11. The following assertions hold:

(1) If σΓ|e = id for some edge e, then σΓ is the identity.

(2) For every m ∈ N the homeomorphism σmΓ is also induced by a tête-à-tête graph.

(3) If σmΓ |e = id for some edge e, then σmΓ is the identity.

Proof. Given σΓ as in (1), since it preserves the cyclic order at every v, then it fixes all the edges
adjacent to the vertices of e. Since the graph is connected, this argument extends to the whole
graph and the statement follows.

To see (2) and find a tête-à-tête graph for σmΓ one can take the same combinatorial graph Γ
with edge lengths equal to the ones of Γ divided by m.

For (3), we have by (2) that the homeomorphism σmΓ is also induced by a tête-à-tête graph
and then we are in the case of point (1).

Lemma 6.12. If (Γ, A, d) is a relative tête-à-tête graph, only modifying the underlying combina-
torics (without changing the topological type of Γ), we can ensure we are in one of the following
cases:

(1) Unless Γ is either homeomorphic to S1 or contractible, all the vertices have valency ≥ 3.

(2) There are no loops (edges joining a vertex with itself) and there is at the most one edge
joining two vertices. In this case the restriction σΓ|v(Γ) determines σΓ.

(3) All the edges have the same length.
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(4) The graph satisfies properties in (2) and (3) simultaneously.

Proof. If Γ is either homeomorphic to S1 or contractible, after Remark 6.9, the proof is trivial.
Let’s see the case where Γ is neither homeomorphic to S1 nor contractible. To get a graph as

in (1) we can consider the graph Γ′ forgetting the valency-2-vertices of Γ but keeping distances. It
is clearly a tête-à-tête graph.

To get a graph as in (2) we consider the graph Γ as in (1). We add as vertices some mid-point-
edges q1,...,qm to Γ′ in order the new graph has no loops and no more than one edge between any
pair of vertices. Now, we have to add as vertices any other point p for which γp(π), the end of the
safe walk for Γ, is one of these new vertices qi. Since σΓ takes isometrically edges to edges, it will
take midpoint edges to midpoint edges of Γ. Then we have to add at the most all the mid point
edges of Γ as vertices to reach the desired graph.

Moreover, we note that in a graph as in (2), the image σΓ(e) of an edge e joining vi and vj ,
has to be the only edge joining σΓ(vi) and σΓ(vj). Then, σΓ|v(Γ) determines σΓ.

To find a tête-à-tête graph as in (3), we start with a graph Γ as in (1). The homeomorphism σΓ
permutes edges. Moreover the tête-à-tête condition says that certain summations of the lengths
{l(e)}e∈e(Γ) are equal to π. We consider only the summations that come from measuring the
lengths of the safe walks that start in vertices of Γ, which are a finite number. We collect all these
linear equations in the variables l(e) in a system S. We consider the system of equations S′ by
replacing the independent term π in the equations of S by 1. It is clear that there exist positive
rational solutions l(e) of the system S′. Let N be a common denominator. We consider the graph
Γ′ by subdividing every edge e of Γ into N · l(e) edges of length π/N obtaining the desired graph.

If Γ′ does not satisfy properties in (2), taking N = 2N you get it. You can also add the middle
points of all the edges as vertices and finish as in the proof of (2).

A way to obtain relative tête-à-tête graphs from pure ones is A’Campo notion of ε-blow up.

Definition 6.13 (ε-blow up of (Σ,Γ) at a vertex of Γ). Let Γ be a pure `-tête-à-tête graph and
Σ be its thickening surface. Let v be a vertex of valency p. We consider the real blow up of Σ at
v. We denote by Σ′ and Γ′ the transformations of Σ and Γ. Note that Σ has one more boundary
component and Γ′ has changed the vertex v by a circle A ∼= RP 1 with p edges attached. Away from
v, we consider the metric in Γ′ as in Γ. We assign the length 2ε to the new edges in Γ′ along RP 1

and redefine the length of the edges corresponding to each e ∈ e(v) by length(e) − ε. (See figure
below Figure 6.14). We do this at every vertex on the orbit of v by the σΓ and denote the resulting
space by Blv(Γ, ε). We say that it is the result of performing the ε-blowing up of Γ at v.

It is immediate to check that (Γ′, A) is a relative tête-à-tête graph and that Σ′ is its thickening.
we denote it by (Σ′, (Γ′, A)).

L

L− ǫ

2ǫ

Figure 6.14: Blow-up some vertex v of valency 4.
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Tête-à-tête twists

Chapter 6 is needed for this chapter. In this chapter we explain how to associate to each tête-à-tête
graph a freely periodic automorphism of a surface up to conjugation and isotopy. First we extend
a little bit the definitions of Chapter 6 and allow safe walks that turn left at vertices instead of
turning right. This extension leads to a definition of signed tête-à-tête graph. Then we associate
to each signed tête-à-tête graph a freely periodic automorphism.

Not every invariant spine obtained in the proof of Lemma 2.13 accepts a tête-à-tête structure
such that σΓ = φ|Γ (see Examples C.1 and 7.16). In Theorem 7.30 we will see show how to
find one that accepts it. In Theorem 7.30, which is one of the main results of the present work
and appeared first in [FPP17], we prove that the automorphisms that can be modeled by signed
tête-à-tête graphs are exactly the freely periodic automorphisms. In Corollary 7.19 we show that
the class of automorphisms modeled by tête-à-tête graphs (as defined by A’Campo) is the class of
freely periodic automorphisms with strictly positive fractional Dehn twist coefficients.

In the last part of the chapter we study, as a corollary of this theory, the modeling of truly
periodic automorphisms by tête-à-tête graphs and obtain analogous results.

7.1 Signed tête-à-tête graphs and freely periodic
automorphisms

We start recalling a definition and making an extension of Remark 6.5 adding point (b’).
Let (Γ, A) be a metric relative ribbon graph. Let (Σ, A) be a thickening, let

gΓ : ΣΓ → Σ

be the gluing map as in Notation 1.11.

Remark 7.1 (Definition of γ−p , ω−p , γ0
p , γ+

p and ω+
p ).
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(b’) for every point p ∈ Γ \ v(G) and every of the two possible oriented directions from p along
Γ, there is a walk starting on p following each of this directions, such that in every vertex v,
the walk continues along the previous edge in the cyclic order of e(v). We denote by γ−p and
ω−p these walks of length π and speed 1. Each of the oriented directions at p corresponds
to a point in q ∈ g−1

Γ (p), which lives in a cylinder Σ̃i. These walks are the image of the
negative sense parametrization of the boundary of Σ̃i starting at q.

We denote by γ+
p and ω+

p the usual safe walks of Definition 6.2 or Remark 6.5 of length π and
speed 1. We call γ+

p and ω+
p the positive safe walks and γ−p and ω−p the negative safe walks.

In the case of points in A, since A is oriented, we have also a positive and negative sense for
a parametrization. Then, for p ∈ A, we define γ+

p (respectively γ−p ) as the parametrization from p
that starts along A in the positive (respectively negative) sense and that when reaching a vertex
v takes the next (respectively previous) edge in the order of e(v)). We recall, once again, that the
orientation on A is opposite to the orientation induced as boundary of Σ.

We also define a safe constant walk γ0
p := p (this one is the safest).

Before stating next definition, recall that there is a bijection between the set C of boundary
components of Σ that are not in A, and the cylinders Σ̃i’s. Given a “sign” map ι : C → {0,+,−},
we denote by ι(i) the image by ι of the component that corresponds to Σ̃i under the bijection.

Definition 7.2. Let (Γ, A) be a metric relative ribbon graph and let (Σ, A) be a thickening. Let C
denote the set of boundary components of Σ which do not belong to A. Fix a map

ι : C → {0,+,−}.

We say that (Γ, A) satisfies the signed tête-à-tête property for ι or that (Γ, A, ι) is a signed relative
tête-à-tête graph if given any point p contained in the interior of an edge the following properties
are satisfied:

(1) If p does not belong to A and p ∈ gΓ(Σ̃i) ∩ gΓ(Σ̃j) for some i, j, then we have the equality

γι(i)p (π) = ωι(j)p (π).

(2) If p belongs to A and p belongs to gΓ(Σ̃i), then the ending point γι(i)p (π) of the unique signed
safe walk starting at p belongs to A.

Notation 7.3 (Remark and Notation). Observe that the map Γ\v(Γ)→ Γ that sends p ∈ Γ\v(Γ)
to γι(i)p (π) extends to v(Γ) and defines a homeomorphism of Γ that we denote by σ(Γ,ι). The proof
is as the one of Lemma 6.8.

In the next definition we use Notation 1.11.

Definition 7.4 (Definition of φ(Γ,A,ι)). Let (Γ, A, ι) be a signed relative tête-à-tête graph. For
every thickening (Σ, A) and for every choice of product structure Σ̃i ≈ Γ̃i × I we consider the
homeomorphism

ψi : Γ̃i × I −→ Γ̃i × I (7.5)

(p, s) 7→ (γ̃ι(i)p (s · π), s)

where γ̃ι(i)p is the lifting of the safe walk to Γ̃i. The homeomorphism ψi of the cylinder can be
visualized very easily using the universal covering of the cylinder as in Figure 7.6.
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These homeomorphisms glue well due to the signed tête-à-tête graph property satisfied by
(Γ, A, ι) and define a homeomorphism of (Σ, A) that leaves ∂1Σ fixed pointwise and A invari-
ant. We denote by φ(Σ,Γ,A,ι) the resulting homeomorphism of (Σ, A). If all the elements on which
it depends are clear from the context, we simply denote it by φΓ. We call it the induced tête-à-tête
twist.

Ci

R× I Σ̃i ≈ Γ̃i × I

Li

ψi(Li)

Γ̃i

u

p ψ(p)
p̃ ψ̃i(p̃)

ψ̃i(L̃i)

L̃i

Figure 7.6: On the right we see the cylinder Σ̃i ' Γ̃i × I and the action of ψi on a properly embedded
segment Li. On the left we see the universal cover of the cylinder with the premimages of Li and the
action ψ̃i (the lifting of ψi).

Example 7.7. Consider the tête-à-tête -structure of the Kp,q of the Example 1.6. In that example
we find the formulas for the genus and the boundary components. The induced homeomorphism
φΓ has order M = lcm(p, q) (and leaves the boundary components invariant by definition). There
are two special orbits, the one of p vertices that are ramification points of order M/q and another
one of q vertices of ramification order M/p.

Then, knowing that ΣφΓ has also D = gcd(p, q) boundary components and using Hurwitz
formula we get that the genus of the quotient surface ΣφΓ is 0.

If we look at the image of Γ = Kp,q by the quotient map p : Σ → ΣφΓ map we obtain the
graph in ΣφΓ of Figure 7.8.

Figure 7.8: Drawing of p(Kpq) which consists of two vertices (red and blue) corresponding to the two
special fibers and r edges corresponding to the D boundary components, in the picture D = 6.

Remark 7.9. We can restate the `−tête-à-tête property in terms of boundary Dehn twists (recal
Definition 2.49) of length ` as follows. Let (Σ,Γ) be a thickening surface of a metric ribbon graph
Γ. Let gΓ : ΣΓ → Σ be the gluing map. Consider the pull back metric on g−1(Γ). Denote by
D` the composition of the boundary Denh twists D` along each Γ̃j ⊂ Γ̃. Then (Σ,Γ) holds the
`-tête-à-tête property if and only if D` is compatible with the gluing gΓ. We see from this that the
lenghts of Γ̃j are in `Q+.
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Remark 7.10. We have made some non-canonical decisions in defining φΓ. This ambiguity has
the following counterpart.

• For a given product structure, the homeomorphism φΓ is defined up to isotopy.

• Given two different product structures (or equivalently, regular retractions) of the cylinders,
the induced tête-à-tête twists are conjugate by a homeomorphism that fixes Γ.

• For two different embeddings of Γ in Σ, the tête-à-tête twists are conjugate by the same
homeomorphism of Σ that relates the two embeddings.

We conclude that a relative signed tête-à-tête graph by itself, defines a freely periodic mapping
class up to conjugation.

Remark 7.11. The homeomorphism φ(Σ,Γ,A,ι) leaves Γ invariant and by Lemma 2.27 has the
following fractional Dehn twist coefficients (see also Figure 7.6):

Ri := rot∂1(φ(Σ,Γ,A,ι), Ci) = ι(i) · π

length(Γ̃i)
. (7.12)

Hence, the homeomorphism ψi of eq. (7.5) equals the linear twist D−Ri,0 (recall Notation 2.34).
So a tête-à-tête twist induces linear twists ψi on each cylinder Σ̃i. By Remark 2.47 the screw
number of ψi equals −Ri.

The following lemma uses results from Section 2.4 and improves Corollary 2.28.

Lemma 7.13. Let φ0, φ1 : Σ → Σ be two homeomorphisms that are the identity on ∂Σ. Let
Γ ↪→ Σ be a spine. Suppose that Γ is invariant by both homeomorphisms, that φ0|Γ = φ1|Γ and
that their fractional Dehn twist coefficients coincide at each boundary component. Then φ0 and
φ1 are conjugate by an homeomorphism h isotopic to the identity in MCG+(Σ, ∂Σ). In particular,
they are isotopic in MCG+(Σ, ∂Σ).

Proof. Since φ0 and φ1 leave Γ invariant, they induce automorphisms ψ0
i , ψ

1
i : Σ̃i → Σ̃i for each

cylinder in ΣΓ. By the first part of Lemma 2.39, these homeomorphisms are, up to isotopy preserv-
ing the action on the boundary, linear twists with the same screw number. Now apply the second
part of Lemma 2.39 to these twists. We get a collection of homeomorphisms hi that conjugate
ψ0
i and ψ1

i and that are isotopic to the identity relative to the boundary. These homeomorphisms
glue up to give a homeomorphism h : Σ → Σ boundary-fixed isotopic to the the identity that
conjugates φ0 and φ1.

Remark 7.14. Observe that if ι(i) = 0 for some i, then the homeomorphism ψi is the iden-
tity and rot∂1(φ(Γ,A,ι), Ci) = 0. In particular, by Corollary 6.11 we find that the signed tête-
à-tête twist must be the identity restricted to Γ and hence the fractional Dehn twist coefficient
rot∂1(φ(Σ,Γ,A,ι), Cj) is an integer for all boundary components. So φΣ,Γ,A,i equals, up to isotopy,
a composition of Dehn twists around boundary parallel curves.

Signed tête-à-tête homeomorphisms are a generalization of Dehn twists. We will call them also
signed tête-à-tête twists. If all the signs are positive this notion coincides with A’Campo’s original
notion of tête-à-tête twists (see [A’C10]).

Example 7.15. The homeomorphisms induced by the tête-à-tête structures on the Kp,q ribbon
graphs given in Example 1.6, were the first examples studied by A’Campo: they model the mon-
odromy fixed at the boundary of the Milnor fibration associated to the singularities xp + yq = 0.

56



Tête-à-tête twists Chapter 7

Before going on with the chapter, we note that not every invariant spine admits a metric
modeling the corresponding homeomorphism. Indeed, we have the following counterexamples.

Example 7.16. In Figure 7.17 we find a spine Γ for the surface of genus 1 with 2 boundary
components that is invariant by the π-rotation along the vertical axis.

This ribbon graph does not admit a tête-à-tête structure that models the given rotation. If
L1 and L2 were the lengths of the edges of the graph that meet both cylinders of ΣΓ, and L3 the
other one, this would imply, by (eq. (7.12)), that 1/2(L1 + L2) = π and 1/2(L1 + L2 + L3) = π
which imply L3 = 0 that is not possible in a tête-à-tête graph.

π

Figure 7.17: A spine for the genus-1 surface with one boundary components that is invariant by the
π-rotation along the vertical axes.

In Example C.1, it is shown a method to produce examples of invariant ribbon graphs that do
not admit a metric that models the automorphism by which it is invariant.

In the next theorem we characterize the homeomorphisms whose mapping class contains a
signed tête-à-tête twist. As a corollary, we obtain a characterization of the homeomorphisms
whose mapping class contains a tête-à-tête graph in the sense of A’Campo [A’C10]. We deal with
the non-relative case first.

Theorem 7.18. Let Σ be an oriented surface with non-empty boundary. Let [φ]∂ be a freely
periodic mapping class in MCG+(Σ, ∂Σ). Then there exists φ ∈ [φ]∂ such that φ is periodic
outside a collar neighborhood U of ∂Σ and:

(i) There exists a signed tête-à-tête spine (Γ, ι) embedded in Σ that is invariant by φ such that
the restriction of φ to Γ coincides with φ(Σ,Γ,ι).

(ii) The isotopy classes relative to the boundary [φ]∂ and [φ(Σ,Γ,ι)]∂ coincide.
(iii) The homeomorphisms φ and φΓ,ι are conjugate by a homeomorphism that fixes the boundary

pointwise, fixes Γ and is isotopic to the identity in MCG+(Σ, ∂Σ).

Corollary 7.19. This theorem characterizes the originally defined A’Campo relative tête-à-tête
twists as: orientation preserving homeomorphism fixing pointwise ∂1Σ and freely isotopic to a
periodic one φ̂ with strictly positive fractional Dehn twist coefficients.

In [HKM07, Definition 2.1], the notion of right-veering diffeomorphism was introduced. In
[Gra15, Proposition 6.2.2] Graf characterized right-veering periodic homeomorphisms as the multi-
speed tête-à-tête twists with non-negative walk lengths. The following corollary strengthens that
result because signed tête-à-tête graphs have a unique walk-length for all boundary components.
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Corollary 7.20. Let (Γ, ι) be a signed tête-à-tête graph. The diffeomorphism φΓ is right-veering
if and only if the map ι doesn’t take the value “−” at any boundary component.

Proof. Both statements follow from Theorem 7.18 and [HKM07, Proposition 3.2].

Proof of Theorem 7.18. We use Notation 1.11, Notation 2.7 and Notation 2.14.
By Lemma 2.23 we can assume that there exists a collar U of ∂Σ and φ ∈ [φ]∂ such that

φ′ := φ|Σ\U is periodic. Let n be the order of φ′. Let Σφ′ be the quotient surface. By abuse of
notation we are writing Σφ′ instead of (Σ \ U)φ′ since Σ and Σ \ U are homeomorphic.

We construct the invariant graph Γ as in the proof of Lemma 2.13, that is, as the preimage by
the quotient map p : Σ → Σφ′ of an appropriate spine Γφ′ for Σφ′ . The rest of the proof consists
in giving a metric for the spine in Σφ′ such that the pullback metric in the corresponding invariant
graph in Σ solves the problem.

By Corollary 2.28, we need to put a metric on Γφ′ such that the pullback-metric in Γ :=
p−1(Γφ′) defines a tête-à-tête metric with γ

ι(i)
p (π) = φ(p) for the signed safe walks along Γ and

with the given signed tête-à-tête twist φΓ,ι having the same fractional Dehn twist coefficients as φ.
We define

Ri := |rot∂1(φ,Ci)|.
The tête-à-tête structure of Γ has to satisfy the equality γp(π) = φ(p) and moreover, the fractional
Dehn twist coefficient of φΓ,ι at Ci has to be Ri. So, by eq. (7.12), we want that for every i with
Ri 6= 0

rot∂1(φ,Ci) · length(Γ̃i) · ι(i) = π (7.21)
holds. If rot∂(φ,Ci) equals 0, by the definition of constant safe walk (see the end of Remark 7.1),
we obtain no condition.

By the definition of Ri and the fact that both rot∂1(φ,Ci) and ι(i) have the same sign, this
equation becomes:

Ri · length(Γ̃i) = π, (7.22)
Moreover, we want the metric on Γ to be invariant by φ′ so it has to be the pullback of a metric

on Γφ′ . We denote by Σφ
′

Γφ′ the surface obtained by cutting Σφ′ along Γφ′ and consider the gluing
map gΓφ′ : Σφ

′

Γφ′ → Σφ′ analogously to Notation 1.11. We consider the lifting of p : Σ → Σφ′ to
the cut surfaces and we denote it by p̃ : ΣΓ → Σφ

′

Γφ′ . We denote by p̃(Γi) the preimage of p(Γi) by
gΓφ′ . Since p̃|Γ̃i : Γ̃i → p̃(Γi) is a n : 1 covering map, we have the equality

length(Γ̃i) = n · length(p̃(Γi)). (7.23)

Note that one can easily read length(p̃(Γi)) looking at the lengths of the edges of p(Γi) ⊆ Γφ′ .
Putting (eq. (7.22))-(eq. (7.23)) together, we find that what we need is that the equality

length(p̃(Γi)) = π

n ·Ri
(7.24)

holds for all i with Ri 6= 0.
Next, we prove that by finding a metric spine Γφ′ ↪→ Σφ′ whose lengths satisfy (eq. (7.24)) for

every i with Ri 6= 0 we finish the proof of the theorem by taking Γ := p−1(Γφ′) with the pullback
metric.

The graph Γ := p−1(Γφ′) is a signed tête-à-tête graph for ι defined as ι(i) = sign(rot∂1(φ,Ci))
because the liftings of the safe walks to each cylinder in ΣΓ act by construction as the lifting

58



Tête-à-tête twists Chapter 7

of φ′ to ΣΓ restricted to Γ̃ (because they have the same rotation number). Let φ(Σ,Γ,ι) be the
induced signed tête-à-tête twist. This tête-à-tête structure on Γ induces by construction a rotation
φ̃(Σ,Γ,ι)|Γ̃i of rotation number |rot∂1(φ,Ci) − brot∂1(φ,Ci)c | in each Γ̃i. It is conjugate to φ̃|Γ̃i
since they have the same rotation number (recall Corollary 2.29). The orbits of φ̃|Γ̃i are the fibers
of p̃|Γ̃i . By the choice of lengths, the orbits of the tête-à-tête rotation in Γ̃i are also the fibers of
p̃|Γ̃i . By Corollary 2.28 we find that φ′ and φ(Σ,Γ,ι) are isotopic since they coincide on Γ.

By first part of Lemma 2.39 we see that, after an isotopy of φ fixing Γ and the boundary we
can assume that φ induces linear twists on the cylinders of φ̃. Then we apply Lemma 7.13 to φ′
and φ(Σ,Γ,ι) to prove part (iii) of the statement.

Now we finish the proof showing how to find the appropriate invariant spine Γ and its tête-à-tête
metric.

First we prove the case g := genus(Σφ′) ≥ 1. To choose a spine in Σφ′ , we use a planar
representation of Σφ′ as a convex 4g-gon in R2 with r disjoint open disks removed from its convex
hull. The sides of the 4g-gon are labelled clockwise like a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g ,
where edges labelled with the same letter (but different exponent) are identified by an orientation
reversing homeomorphism. The number r is the number of boundary components. We number the
boundary components Ci ⊆ ∂Σ, 1 ≤ i ≤ r. We denote by d the arc a2b2a

−1
2 b−1

2 . . . agbga
−1
g b−1

g . We
consider l1,...,lr−1 arcs as in Figure 7.26. We denote by c1,...,cr the edges in which a−1

1 (and a1)
is subdivided, numbered according to the component p(Ci) they enclose. We consider the spine
Γφ′ of Σφ′ given by the union of d, a1b1a

−1
1 b−1

1 and the li’s. We construct Γφ′ so that it passes by
all the branching points of p. Then the retraction of Σφ′ to Γφ′ lifts to a retraction of Σ to the
preimage Γ := p−1(Γφ′). Hence Γ is a spine of Σ.

We denote by D, B1 and Ci the lengths of d, b1 and ci respectively. We will assume all the li
and b1 of the same length L. Then the system (eq. (7.24)) for this case can be expressed as follows:

2L+ 2C1 = π

n ·R1

2L+ 2Ci = π

n ·Ri
for i = 2, ..., r − 1 (7.25)

2L+ 2Cr +D = π

n ·Rr
,

which has obviously positive solutions Ci, D after taking, for example, L = min{ π
4·n·Ri }. We

assign length(ai) = length(bi) = D/4(g − 1) for i > 1 to get a metric on Γφ. We consider the
pullback-metric in Γ. This finishes the case genus(Σφ′) ≥ 1.

For the case genus(Σφ′) = 0 we proceed a bit differently to choose the spine Γφ′ . The surface
Σφ′ is a disk with r − 1 smaller disjoint disks removed. We cut the surface along an embedded
segment that we call c as we can see in the first image of Figure 7.27. Cutting along c we get
another planar representation of Σφ′ as in the second image. The exterior boundary corresponds
to cc−1; we call the exterior boundary P and denote by q1 and q2 the points in P that come from
the two extremes of c. We look at the graph of the third picture in Figure 7.27. We have drawn
r − 1 vertical segments l1,...,lr−1 so that P union with them contains all branch points and is a
regular retract of the disk enclosed by P minus the r disks.

The rest of the proof follows by cases on the number of boundary components r and the number
of branch points.

If r = 1 and there are no branch points or 1 branch point, then Σ is a disk (this follows from
the Hurwitz formula) which is not covered by the statement of the theorem. If there are at least
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d

c1
c2

cr

a1

b1

a−1
1 b−1

1

. . .

p(C1) p(C2)

p(Cr)

lr−1

l2

l1

Figure 7.26: Planar representation of the surfaceΣφ of genus≥ 1 and r boundary components p(C1),
...,p(Cr). Drawing of l1, ..., lr and c1, .., cr.

c

c

c

p(C1) p(C2) p(Cr−1)

p(Cr)

p(C1)
p(Cr)

. . .

p(C2)

. . . q1

q2

a1

a2

a′2

ar

l1 l2 lr−1

Figure 7.27: In the first two pictures we have the disk with r − 1 smaller disks removed. In the third
one we forget the identification along the exterior and we draw a spine.

2 branch points, we can get that two branch points lie in q1 and q2 so that Γ has no univalent
vertices. In this case we set length(c) = π

2nR1
.

Suppose now r = 2. If there are no branch points, then Σ is a cylinder which is not included
in the statement of this theorem.

If there is at least 1 branch point we consider two cases, namely R1 = R2 and R1 > R2.
In the case R1 = R2, we choose the graph depicted on the right hand side of Figure 7.28. That

is, q1 and q2 are exactly a1∩a2. In this case we do not care about the location of the branch point
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as long as it is contained in the graph. In this case we set lenght(c) = length(l1) = π
2nR1

In the case R1 < R2, we choose the graph depicted on the left hand side of Figure 7.28 and
we choose the branch point to lie on q1, this way, since q1 is the only vertex of valency 1, we
get that the preimage of this graph by p does not have univalent vertices. We set the lengths,
length(l1) = π

nR1
and length(c) = ( π

nR2
− π

nR1
)/2.

a1 a2 a1 a2

p(C1)

p(C2)

q1

q2

p(C2)

p(C1)
l1

l1

q1

q1

Figure 7.28: On the left, the case R1 < R2. On the right the case when R1 = R2.

Suppose now r > 2.
We are going to assign lengths to every edge in Figure 7.27 and decide how to divide and glue

P in order to recover Σφ′ . This means that we are going to decide the position of q1 and q2 in P ,
relative to the position of the ends of the li’s, in order to get a suitable metric spine of the quotient
surface Σφ′ .

To every vertical interior segment lj we assign the same length

L < min{ π

2(n ·Ri)
}.

We look at the segments a1, a2, a′2,...,ar−1, a′r−1, ar in which P is divided by the vertical segments
(see Figure 7.27) and give lengths A1, A2, A′2,...,Ar−1, A′r−1, Ar. The following system corresponds
to (eq. (7.24)) for this case:

A1 + L = π

n ·R1

Ai +A′i + 2L = π

n ·Ri
for i = 2, ..., r − 1 (7.29)

Ar + L = π

n ·Rr
.

It has obviously positive solutions Ai. We choose Ai = A′i for i = 2, ..., r − 1.
In order this distances can be pullback to the original graph Σφ′ , there is one equation left:

we have to impose equal length to the two paths c and c−1, or in other words to place q1 and q2
dividing P in two segments of equal length.

If φ has at least two branch points, we choose q1 and q2 to be any two of the branch points.
Then, we can choose the metric and the vertical segments so that q1 and q2 are the middle points
of a1 and ar. If we identify the two paths c and c−1 joining q1 and q2 then we recover Σφ′ , and
we get a metric graph on it. Then, the preimage by p of the resulting metric graph gives a metric
graph. We claim that this graph has no univalent vertices. Indeed, a univalent vertex of this graph
has to be the preimage of univalent vertices of the graph below, which are only q1 and q2, which
are branch points. By Remark 2.8 all their preimages are ramification points and then they are
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not univalent vertices. The metric induces a tête-à-tête structure in the graph by construction.
Now, we finish the proof as in the case genus(Σφ′) ≥ 1.

If φ has no ramification points or only one, in the previous construction we could obtain
univalent vertices at the preimages of q1 and q2. So we need to do some changes in the assignations
of lengths and in the positions of the vertical segments relative to q1 and q2 in order that the
extremes q1 and q2 of c coincide with vertices of the graph in Σφ′ .

Assume that A1 ≥ A2 ≥ · · · ≥ Ar.
We choose q1 := a1 ∩ a2. Let q2 be the antipodal point (so q1 and q2 divides P in two paths of

equal length). If q2 is a vertex we have finished. If it is not, then it is on a segment a′i, for some
i = 2, ..., r1. We redefine A′i := d(a′i ∩ a′i−1, q2) and Ai := Ai + d(q2, a

′
i ∩ a′i+1). Now the antipodal

point of q1 is ai∩ai+1. We redefine q2 := ai∩ai+1 and identify orientation reversing the two paths
joining q1 and q2 to recover Σφ.

Now the pullback of the resulting metric graph has no univalent vertices and gives a tête-à-tête
structure since the corresponding system of equations is satisfied.

Now we state the relative case in a simple way:

Theorem 7.30. Let Σ be an oriented surface with non-empty boundary. Let ∂1Σ be a non empty
union of boundary components. Let A be the union of the boundary components not contained in
∂1Σ. Let φ be an orientation preserving homeomorphism fixing pointwise ∂1Σ and freely isotopic
to a periodic homeomorphism. Then, there exists a signed tête-à-tête spine (Γ, A, ι) ↪→ Σ such that
φ(Σ,Γ,A,ι) is isotopic relative to ∂1Σ to φ. Moreover, if φ is periodic outside a collar of ∂1Σ, we
have also that [φ]∂,φ|∂ = [φ(Σ,Γ,A,ι)]∂,φ|∂ .

Proof. Apply Alexander’s trick to the boundary components in A in order to obtain a larger
surface and a homeomorphism fixing pointwise the boundary. Construct a signed tête-à-tête graph
inducing this homeomorphism like in the proof of Theorem 7.18. We can always get that this
signed tête-à-tête graph contains as vertices the centers of the disks added by Alexanders’s trick.
Now apply an ε-blow up (recall Definition 6.13)to these vertices to get the desired signed relative
tête-à-tête graph.

7.2 Truly periodic automorphisms and tête-à-tête
graphs

In this section, we prove, as a corollary of the previous section, that periodic homeomorphisms
induced by tête-à-tête graphs give rise to all truly periodic homeomorphisms (leaving at least one
boundary component invariant) up to isotopy and conjugacy.

Definition 7.31. Replacing the map (eq. (7.5)) in Definition 7.4 by

ψi : Γ̃i × I −→ Γ̃i × I

(p, s) 7→ (γ̃+
p (π), s)

we get a truly periodic homeomorphism that we denote by φperΣ,Γ,A,ι.We call it the induced periodic
tête-à-tête twist.
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Remark 7.32. Similarly as in Remark 4.14 we get must observe the following ambiguity in the
decisions made:

• For two different product structures of the cylinders, the induced periodic tête-à-tête twists
are conjugate by a homeomorphism that fixes Γ.

• For two different embeddings in Σ, the periodic tête-à-tête twists are conjugate by the same
homeomorphism of Σ that relates the two embeddings.

Note that obviously φperΣ,Γ,A,ι is freely isotopic to φ(Σ,Γ,A,ι) and coincides with it along Γ. Given
a periodic homeomorphism φ, we can clearly choose a representative φ′ of [φ] that leaves each
component in ∂1Σ pointwise fixed (by isotoping φ near ∂1Σ until it is the identity on all of
them). Then, we can find a signed tête-à-tête graph (Γ, A, ι) embedded in Σ to represent it using
Theorem 7.18 and Theorem 7.30. Then, we can consider the periodic homeomorphism φperΣ,Γ,A,ι.
Note that we can always get that φ′ has all its fractional Dehn twist coefficients positive, which
means ι ≡ +. Then, we get the following theorem by using Corollary 2.17:

Theorem 7.33. Let Σ be a connected surface with non-empty boundary which is not a disk or a
cylinder. Let φ be an orientation preserving periodic homeomorphism of Σ that leaves (at least)
one boundary component invariant. Let A be the set containing all boundary components that are
not invariant by φ. Then there exists a relative tête-à-tête graph (Γ, A) embedded in (Σ, A), which
is invariant by φ, such that:

(i) We have the equality of boundary-free isotopy classes [φper(Σ,Γ,A,ι)]A,φ|A = [φ]A,φ|A (recall no-
tation introduced in Definition 2.1).

(ii) The homeomorphism φ is conjugate to φper(Σ,Γ,A,ι) by a homeomorphism that fixes Γ.

Remark 7.34. Observe that in order to represent all truly periodic homeomophisms we do not
need the extension to be signed tête-à-tête graphs, A’Campo’s original construction is enough.

7.3 General tête-à-tête structures

In this section we study any orientation preserving periodic homeomorphism. Let φ : Σ → Σ
be such a homeomorphism. We realize its boundary-free isotopy type and its conjugacy class in
MCG(Σ) by a generalization of tête-à-tête graphs, using a technique that reduces to the case of
homeomorphisms of a larger surface that leave all boundary components invariant.

In contrast with the rest of the work, in this section, we allow ribbon graphs with some special
univalent vertices.

Definition 7.35. A ribbon graph with boundary is a pair (Γ,P) where Γ is a ribbon graph, and
P is the set of univalent vertices, with the following additional property: given any vertex v of
valency greater than 1 in the cyclic ordering of adjacent edges e(v) there are no two consecutive
edges connecting v with vertices in P.

In order to define the thickening of a ribbon graph with boundary we need the following
construction:

Let Γ′ be a ribbon graph (without univalent vertices)and let Σ be its thickening. Let

gΓ′ : ΣΓ′ → Σ
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be the gluing map. The surface ΣΓ′ splits as a disjoint union of cylinders
∐
i Σ̃i. Let w be a vertex

of Γ′. The cylinders Σ̃i such that w belongs to gΓ′(Σ̃i) are in a natural bijection with the pairs of
consecutive edges (e′, e′′) in the cyclic order of the set e(w) of adjacent edges to w.

Let (Γ,P) be a ribbon graph with boundary. The graph Γ′ obtained by erasing from Γ the set
E of all vertices in P and its adjacent edges is a ribbon graph. Consider the thickening surface
Σ of Γ′. Let e be an edge connecting a vertex v ∈ P with another vertex w, let e′ and e′′ be
the inmediate predecesor and succesor of e in the cyclic order of e(w). By the defining property
of ribbon graphs with boundary they are consecutive edges in e(w) \ E, and hence determine a
unique associated cylinder which will be denoted by Σ̃i(v).

Each cylinder Σ̃i has two boundary components, one, denoted by Γ̃i corresponds to the bound-
ary component obtained by cutting the graph, and the other, called Ci, corresponds to a boundary
component of Σ. Fix a cylinder Σ̃i. Let {v1, ..., vk} be the vertices of P whose associated cylinder
is Σ̃i. Let {e1, ..., ek} be the corresponding edges, let {w1, ..., wk} be the corresponding vertices at
Γ′, and let {w′1, ..., w′k} be the set of preimages by gΓ′ contained in Σ̃i. The defining property of
ribbon graphs with boundary imply that w′i and w′j are pairwise different if i 6= j. Furthermore,
since {w′1, ..., w′k} is included in the circle Γ̃i, which has an orientation inherited from Σ, the set
{w′1, ..., w′k}, and hence also {e1, ..., ek} and {v1, ..., vk} has a cyclic order. We assume that our
indexing respects it.

Fix a product structure S1×I for each cylinder Σ̃i, where S1×{0} corresponds to the boundary
component Γ̃i, and S1 × {1} corresponds to the boundary component of Ci.

Using this product structure we can embedd Γ in Σ: for each vertex v ∈ P consider the
corresponding cylinder Σ̃i(v), let w′ be the point in Γ̃i(v) determined above. We embedd the
segment gΓ′(w′ × I) in Σ.

Doing this for any vertex v we obtain an embedding of Γ in Σ such that all the vertices P
belong to the boundary ∂Σ, and such that Σ admits Γ as a regular deformation retract.

Definition 7.36. Let (Γ,P) be a ribbon graph with boundary. We define the thickening surface Σ
of (Γ,P) to be the thickening surface of Γ′ toghether with the embeding (Γ,P) ⊂ (Σ, ∂Σ) constructed
above. We say that (Γ,P) is a general spine of (Σ, ∂Σ).

Definition 7.37 (General safe walk). Let (Γ,P) be a metric ribbon graph with boundary. Let σ
be apermutation of P.

We define a general safe walk in (Γ,P, σ) starting at a point p ∈ Γ \ v(Γ) to be a map γp :
[0, π]→ Γ such that

1) γp(0) = p and |γ′p| = 1 at all times.

2) when γp gets to a vertex of valency ≥ 2 it continues along the next edge in the cyclic order.

3) when γ gets to a vertex in P, it continues along the edge indicated by the permutation σ.

Definition 7.38 (General tête-à-tête graph). Let (Γ,P, σ) be as in the previous definition. Let
γp, ωp be the two safe walks starting at a point p in Γ \ v(Γ).

We say Γ has the general tête-à-tête property if

• for any p ∈ Γ \ v(Γ) we have γp(π) = ωp(π)

Moreover we say that (Γ,P, σ) gives a general tête-à-tête structure for (Σ, ∂Σ) if (Σ, ∂Σ) is the
thickening of (Γ,P).
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In the following construction we associate to a general tête-à-tête graph (Γ,P, σ) a homeo-
morphism of (Γ,P) which restricts to the permutation σ in P; we call it the general tête-à-tête
homeomorphism of (Γ,P, σ). We construct also a homeomorphism of the thickening surface which
leaves Γ invariant and restricts on Γ to the general tête-à-tête homeomorphism of (Γ,P, σ). We
construct the homeomorphism on the graph and on its thickening simultaneously.

Consider the homeomorphism of Γ′ \ v(Γ) defined by

p 7→ γp(π).

The same proof of Lemma 6.8 shows that there is an extension of this homeomorphism to a
homeomorphism

σΓ : Γ→ Γ.

The restriction of the general tête-à-tête homeomorphism that we are constructing to Γ′ coincides
with σΓ. The mapping σΓ leaves Γ′ invariant for being a homeomorphism. Let Γ̃′ be the union of
the circles Γ̃i. The homeomorphism σΓ|Γ′ lifts to a periodic homeomorphism

σ̃ : g−1
Γ′ (Γ̃′)→ g−1

Γ′ (Γ̃′),

which may exchange circles in the following way. For any p ∈ Γ̃′, the points in g−1
Γ′ (p) corresponds

to the starting poing of safe walks in Γ̃′ starting at p. A safe walk starting at p is determined by
the point p and an starting direction at an edge containg p.

As we have seen, if (Γ,P, σ) is a general tête-à-tête structure for (Σ, ∂Σ) then the surface ΣΓ′

is a disjoint union of cylinders. The lifting σ̃ extends to ΣΓ′ .. This extension interchanges some
cylinders Σ̃i and goes down to an homeomorphism of Σ. We denote it by φ(Γ,P,σ). If necessary,
we change the embedding of the part of Γ not contained in Γ′ in Σ such that it is invariant by
φ(Γ,P,σ). This is done by an adequate choice of the trivilizations of the cylinders.

Definition 7.39. The homeomorphism φ(Γ,P,σ) is by definition the homeomorphism of the thick-
ening, and its restriction to Γ the general tête-à-tête homeomorphism of (Γ,P, σ).

With the notation and definitions introduced we are ready to state and proof the main result
of the work.

Theorem 7.40. Given a periodic homeomorphism φ of a surface with boundary (Σ, ∂Σ) which is
not a disk or a cylinder, the following assertions hold:

(i) There is a general tête-à-tête graph (Γ,P, σ) such that the thickening of (Γ,P) is (Σ, ∂Σ),
the homeomorphism φ leaves Γ invariant and we have the equality φ|Γ = φ(Γ,P,σ)|Γ.

(ii) We have the equality of boundary-free isotopy classes [φ|Γ] = [φ(Γ,P,σ)].

(iii) The homeomorphisms φ and φ(Γ,P,σ) are conjugate.

Proof. In the first part of the proof we extend the homeomorphism φ to a homeomorphism φ̂ of
a bigger surface Σ̂ that leaves all the boundary components invariant. Then, we find a tête-à-tête
graph Γ̂ for φ̂ such that Γ̂∩Σ, with a small modification in the metric and a suitable permutation,
is a general tête-à-tête graph for φ.

Let n be the order of the homeomorphism. Consider the permutation induced by φ in the
set of boundary components. Let {C1, ..., Cm} be an orbit of cardinality strictly bigger than 1,
numbered such that φ(Ci) = Ci+1 and φ(Cm) = C1. Take an arc α ⊂ C1 small enough so that it
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Figure 7.41: Example of a star-shaped piece S with 6 arms on the left and boundary components
components on the right. The arcs along which the two pieces are glued, are marked in red. In blue and
red are the boundaries of the two disks that we used to cap off the new boundaries.

is disjoint from all its iterations by φ. Define the arcs αi := φi(α) for i ∈ {0, ..., n− 1}, which are
contained in ∪iCi. Obviously we have the equalities αi+1 = φ(αi) and φ(αn−1) = α0 = α.

We consider a star-shaped piece S of n arms as in Figure 7.41. We denote by D the central
boundary component. Let a0, . . . , an−1 be the boundary of the arms of the star-shaped piece
labelled in the picture, oriented counterclockwise. We consider the rotation r of order n acting on
this piece such that r(ai) = ai+1. Note that this rotation leaves D invariant.

We consider the surface Σ̂ obtained by gluing Σ and S identifying ai with αi reversing the
orientation, and such that φ and the rotation r glue to a periodic homeomorphism φ̂ in the resulting
surface.

The boundary components of the new surface are precisely the boundary components of Σ dif-
ferent from {C1, ..., Cm}, the new boundary component D, and the boundary components C ′1,...,C ′k
that contain the part of the Ci’s not included in the union ∪n−1

i=0 α
i.

The homeomorphism φ̂ leaves D invariant and may interchange the new boundary components
C ′1,...,C ′k. We cup each component C ′i with a disk Di and extend the homeomorphism by the
Alexander trick, obtaining a homeomorphism φ̂ of a bigger surface Σ̂. The only new ramification
points that the action of φ̂ may induce are the centers ti of these disks. We claim that, in fact,
each of the ti’s is a ramification point.

Denote the quotient map by
p : Σ̂→ Σ̂φ̂.

In order to prove the claim notice that the difference Σ̂\Σ is homeomorphic to a closed surface
with m + 1 disks removed. On the other hand the difference of quotient surfaces Σ̂φ̂ \ Σφ is
homeomorphic to a cylinder. Since m is strictly bigger than 1, Hurwitz formula for p forces the
existence of ramification points. Since p is a Galois cover each ti is a ramification point.

The new boundary component of Σ̂φ̂ corresponds to p(D), where D is invariant by φ̂. The
point q1 := p(ti) is then a branch point of p.

We do this operation for every orbit of boundary components in Σ of cardinality greater than
1. Then we get a surface Σ̂ and an extension φ̂ of φ that leaves all the boundary components
invariant. The quotient surface Σ̂φ̂ is obtained from Σφ attaching some cylinders Cj to some
boundary components. Let

p : Σ̂→ Σ̂φ̂
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denote the quotient map. Comparing p|Σ and p|Σ̂, we see that we have only one new branching
point qj in every cylinder Cj .

Now we construct a tête-à-tête graph for φ̂modifying slightly the construction of Theorem 7.18.
To fix ideas we consider the case in which the genus of the quotient Σ̂φ̂ is positive. The modifi-

cation of the genus 0 case is exactly the same. As in Theorem 7.18 we use a planar representation
of Σφ as a convex 4g-gon in R2 with r disjoint open disks removed from its convex hull and whose
edges are labelled clockwise like

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g .

We number the boundary components Ci ⊂ ∂Σ, 1 ≤ i ≤ r, we denote by d the arc a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g ,
and we consider l1,...,lr−1 arcs as in Figure 7.42. We denote by c1,...,cr the edges in which a−1

1
(and a1) is subdivided according to the component p(Ci) they enclose.

We impose the further condition that each of the regions in which the polygon is subdivided
by the li’s encloses not only a component p(Ci), but also the branching point qi that appears in
the cylinder Ci. We assume that the union of d, a1b1a

−1
1 b−1

1 and the li’s contains all the branching
points of p except the qi’s.

In order to be able to lift the retraction we need that the spine that we draw in the quotient
contains all branching points. In order to achieve this we add an edge si joining qi and some
interior point q′i of li for i = 1, . . . , r − 1 and joining qr with some interior point q′r of lr−1. We
may assume that q′i is not a branching point. We consider the circle p(Ci) and ask si to meet it
transversely to it at only 1 point. See Figure 7.43. We consider the graph Γ′ as the union of the
previous segments and the si’s. Clearly the quotient surface retracts to it. Since it contains all
branching points its preimage Γ̂ is a spine for Σ̂. It has no univalent vertices since the qi’s are
branching points of a Galois cover.

In order to give a metric in the graph we proceed as follows. We give the segments d and Ci’s
the same length they had in the proof of Theorem 7.18. We impose every si to have length some
small enough ε and the part of si inside the cylinder Ci to have length ε/2 (see Figure 7.43). We
give each segment li length L−2ε. It is easy to check that the preimage graph Γ̂ with the pullback
metric is tête-à-tête .

Now we consider the graph Γ := Γ̂∩Σ with the restriction metric, except on the edges meeting
∂Σ whose length is redefined to be ε. Along the lines of the proof of Theorem 7.18 we get that
φ(Γ,P,σ) and φ are isotopic and conjugate. If we denote by P the set of univalent vertices of Γ, it
is an immediate consequence of the construction that (Γ,P, σ) with the obvious permutation σ of
P is a general tête-à-tête graph with φ(Γ,P,σ)|Γ = φ|Γ.
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d

c1
c2

cr

a1

b1

a−1
1 b−1

1

. . .

s1 s2

sr

lr−1

l2

l1

a1

a2

a′2

ar

l1 l2 lr−1

s1 s2 sr

Figure 7.42: Drawing of Γ′ for the case genus(Σ̂φ̂) ≥ 1 in the firts image and genus(Σ̂φ̂) = 0 in the
second.

p(Ci)

p(D)

q1 := p(ti)

l1

s1 ⊂ Γφ̂
ǫ/2

ǫ/2

Figure 7.43: Neighbourhood of q1 = p(ti) in Σ̂φ̂ and edge s1 joining q1 and l1.
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Chapter 8

Mixed tête-à-tête graphs

Chapter 7 is needed for this chapter. With pure, relative and general tête-à-tête graphs we model
freely periodic homeomorphisms. In this chapter, we extend the notion of tête-à-tête graph and
introduce mixed tête-à-tête graphs with the aim to model some pseudo-periodic homeomorphisms
in Chapter 9. We use the theory and notation of Section 2.4. The content of this chapter is purely
of a graph-theoretical nature and appeared before on [FPP17] and [PS17].

Let (Γ•, A•) be a decreasing filtration on a connected relative metric ribbon graph (Γ, A). That
is

(Γ, A) = (Γ0, A0) ⊃ (Γ1, A1) ⊃ · · · ⊃ (Γd, Ad)
where ⊃ between pairs means Γi ⊃ Γi+1 and Ai ⊃ Ai+1, and where (Γi, Ai) is a (possibly dis-
connected) relative metric ribbon graph for each i = 0, . . . , d. We say that d is the depth of the
filtration Γ•. We assume each Γi does not have univalent vertices and is a subgraph of Γ in the
usual terminology in Graph Theory. We observe that since each (Γi, Ai) is a relative metric ribbon
graph, we have that Ai \Ai+1 is a disjoint union of connected components homeomorphic to S1.

For each i = 0, . . . , d, let
δi : Γi → R≥0

be a locally constant map (so it is a map constant on each connected component). We put the
restriction that δ0(Γ0) > 0. We denote the collection of all these maps by δ•.

Let p ∈ Γ, we define cp as the largest natural number such that p ∈ Γcp .

Definition 8.1 (Mixed safe walk). Let (Γ•, A•) be a filtered relative metric ribbon graph. Let
p ∈ Γ \A \ v(Γ). We define a mixed safe walk γp starting at p as a concatenation of paths defined
iteratively by the following properties

i) γ0
p is a safe walk of length δ0(p) starting at pγ0 := p. Let pγ1 := γ0(δ0) be its endpoint.

ii) Suppose that γi−1
p is defined and let pγi be its endpoint.

– If i > cp or pγi /∈ Γi we stop the algorithm.
– If i ≤ cp and pγi ∈ Γi then define γip : [0, δi(pi)]→ Γi to be a safe walk of length δi(pγi )

starting at pγi and going in the same direction as γi−1
p .
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iii) Repeat step ii) until algorithm stops.

Finally, define γp := γkp ? · · ·?γ0
p, that is, the mixed safe walk starting at p is the concatenation

of all the safe walks defined in the inductive process above.

As in the pure case, there are two safe walks starting at each point on Γ \ (A ∪ v(Γ)). We
denote them by γp and ωp.

Definition 8.2 (Boundary mixed safe walk). Let (Γ•, A•) be a filtered relative metric ribbon
graph and let p ∈ A. We define a boundary mixed safe walk bp starting at p as a concatenation of
a collection of paths defined iteratively by the following properties

i) b0p0
is a boundary safe walk of length δ0(p) starting at p0 := p and going in the direction

indicated by A (as in the relative tête-à-tête case). Let p1 := b0p(δ0) be its endpoint.

ii) Suppose that bi−1
pi−1

is defined and let pi be its endpoint.

– If i > cp or pi /∈ Γi we stop the algorithm.
– If i ≤ c(p) and pi ∈ Γi then define bipi : [0, δi(pi)]→ Γi to be a safe walk of length δi(pi)

starting at pi and going in the same direction as bi−1
pi−1

.

iii) Repeat step ii) until algorithm stops.

Finally, define bp := bkpk ? · · · ? b
0
p0
, that is, the boundary mixed safe walk starting at p is the

concatenation of all the safe walks defined in the inductive process.

Notation 8.3. We call the number k in Definition 8.1 (resp. Definition 8.2), the order of the
mixed safe walk (resp. boundary mixed safe walk) and denote it by o(γp) (resp. o(bp)).

We denote by l(γp) the length of the mixed safe walk γp which is the sum

o(γp)∑
j=0

δj(pγj )

of the lengths of all the walks involved. We consider the analogous definition l(bp).
As in the pure case, two mixed safe walks starting at p ∈ Γ \ v(Γ) exist. We denote by ωp the

mixed safe walk that starts at p but in the opposite direction to the starting direction of γp.
Observe that since the safe walk b0p0

is completely determined by p, for a point in A there
exists only one boundary safe walk.

Now we define the relative mixed tête-à-tête property.

Definition 8.4 (Relative mixed tête-à-tête property). Let (Γ•, A•) be a filtered relative metric
ribbon graph and let δ• be a set of locally constant mappings δk : Γk → R≥0. We say that (Γ•, A•, δ•)
satisfies the relative mixed tête-à-tête property or that it is a relative mixed tête-à-tête graph if for
every p ∈ Γ− (v(Γ) ∪A)

I) The endpoints of γp and ωp coincide.

II) cγp(l(γp)) = cp

and for every p ∈ A, we find that

III) bp(l(bp)) ∈ Acp
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As a consequence of the two previous definitions we have:

Lemma 8.5. Let (Γ•, A•, δ•) be a mixed relative tête-à-tête graph, then

a) o(ωp) = o(γp) = cp

b) l(γp) = l(ωp) for every p ∈ Γ\v(Γ).

Proof. a)By Definition 8.1 ii), we find that o(γp) ≤ cp for all p ∈ Γ\v(Γ). Suppose that for some p,
we find that o(γp) = k < cp. This means, that while constructing the mixed safe walk we stopped
after constructing the path γkp either because k > cp which contradicts the supposition, or because
the endpoint pγk of γkp is not in Γk which contradicts that cp = cγp(l(γp)). This proves the equality
o(γp) = cp. In order to prove o(ωp) = cp use the equality γp(l(γp)) = ωp(l(ωp)) and repeat the
same argument.

b) Let q be the endpoint of γp and ωp. Since the image of the safe walks γcpp and ωcpp lies on
the same connected component of Γcp we find that their starting points pγcp and pωcp also lie on that
same connected component. Therefore δcp(pγcp) = δcp(pωcp).

Suppose now that pγi and pωi lie on the same connected component of Γi (and so δi(pγi ) =
δi(pωi )). Then the image of the safe walks γi−1

p and ωi−1
p lies on the same connected component

of Γi−1 and we find that their starting points pγi−1 and pωi−1 also lie on that same connected
component. So δi−1(pγi−1) = δi−1(pωi−1).

We conclude that δj(pγj ) = δj(pωj ) for all j = 0, . . . , d which concludes the proof.

An purely graph-theoretical example is worked out in Example C.9.
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Chapter 9

Mixed tête-à-tête twists

Chapter 8 and last section of Chapter 2 are the preliminaries for this chapter. In this chapter, we
associate a mapping class of pseudo-periodic automorphisms to each mixed tête-à-tête graph and
we prove several properties about these automorphisms.

Notation 9.1. Let gΓi : ΣΓi → Σ be the gluing map as in Notation 1.11. Let ΓΓi be the
preimage of Γ by gΓi . We also denote by gΓi its restriction gΓi : ΓΓi → Γ. The union of the
boundary components of ΣΓi that come from Γi is denoted by Γ̃i. Observe that a single connected
component of Γi might produce more than one boundary component in ΣΓi .

It’s clear that gΓi factorizes as follows:

ΣΓi → ΣΓi+1 → ...→ Σ.

We denote these mappings by gj : ΣΓj → ΣΓj+1 for j = 0, ..., d − 1 and also their restrictions
gj : ΓΓj → ΓΓj+1 .

Remark 9.2. Observe that by Definition 8.4, each connected component of the relative metric
ribbon graph (ΓΓ1 , Γ̃1) has the relative tête-à-tête property for safe walks of length δ0(Γ).

Let φΓ,0 : ΣΓ1 → ΣΓ1 be the tête-à-tête homeomorphism fixing each boundary component
that is not in Γ̃1 as in Definition 7.4. It is the homeomorphism induced by the relative tête-à-
tête property of each connected component of (ΓΓ1 , Γ̃1) for some choice of product structures on
(ΣΓ1)ΓΓ1 .

Also according to Definition 7.4, observe that since we do not specify anything, we assume
that the sign ι is constant +1.

Now we continue to define inductively the homeomorphism φΓ.

Notation 9.3. Let
Dδi : ΣΓi → ΣΓi

be the homeomorphism consisting of the composition of all the boundary Dehn twistsDδi(gΓi (C))(C)
for all connected components C in Γ̃i (recall Definition 2.49). Where δi(gΓi(C)) means δi(p) for
any p ∈ (gΓi(C).
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Lemma 9.4. The homeomorphism

φ̃Γ,1 := Dδ1 ◦ φΓ,0 : ΣΓ1 → ΣΓ1

is compatible with the gluing g1 : ΣΓ1 → ΣΓ2 .

Proof. We use the notation introduced in Definition 8.1.
Since g1 only identifies points in Γ̃1, we must show that if x, y are different points in Γ̃1 such

that g1(x) = g1(y) ∈ Γ1, then g1(φ̃Γ,1(x)) = g1(φ̃Γ,1(y)).
So let x, y ∈ Γ̃1 be such that g1(x) = g1(y) = p. In particular, cp = 1 and we find that

γp = γ1
p ? γ

0
p and ωp = ω1

p ? ω
0
p by Lemma 8.5 a). So the mixed safe walks end in a connected

component of Γ1. Denote by p̂ their endpoint. By Definition 8.4 II) we find that cp̂ = 1.
Observe that φΓ,0(x) = bx(δ0(p)) where bx : [0, δ0(p)]→ ΓΓ1 is the boundary safe walk of length

δ0(p) given by the relative tête-à-tête structure on (ΓΓ1 , Γ̃1). Analogously φΓ,0(y) = by(δ0(y)). So
we have g1(φΓ,0(x)) = γp(δ0(p)) and g1(φΓ,0(y)) = ωp(δ0(p)).

It is clear that (Dδ1(φΓ,0(x))) = γ̃0
p(δ1(φΓ,0(x)) + δ0(p)) with γ̃p the safe walk in Γ̃1. It is also

clear that γ̃p is the actual lifting of γp along Γ. Then,

g1(Dδ1 ◦ φΓ,0(x)) = γp(δ1(φΓ,0(x)) + δ0(p)) = γp(δ1(γ0
p(δ0(p))) + δ0(p)) = γp(l(γp))

and analogously g1(Dδ1 ◦ φΓ,0(y)) = ωp(l(ωp)).
By property I) of a mixed tête-à-tête graph we conclude.

Now, we consider the homeomorphism induced by φ̃Γ,1 and we denote it by

φΓ,1 : ΣΓ2 → ΣΓ2 .

The same argument applies inductively to prove that each map

φ̃Γ,i := Dδi ◦ φΓ,i−1 : ΣΓi → ΣΓi (9.5)

is compatible with the gluing gi and hence it induces a homeomorphism

φΓ,i : ΣΓi+1 → ΣΓi+1 . (9.6)

In the end we get a map
φΓ := φΓ,d : Σ→ Σ (9.7)

which we call the mixed tête-à-tête homeomorphism induced by (Γ•, δ•).

Notation 9.8. We can extend the notation introduced before by defining φΓ,−1 := id and φ̃Γ,0 :=
Dδ0 ◦ φΓ,−1 = Dδ0 .

Then we can restate Remark 9.2 by saying that φ̃Γ,0 is compatible with the gluing g0 and
induces the homeomorphism φΓ,0.

Remark 9.9. After the description of the construction of the mixed tête-à-tête map above and
the diagram (9.10), we observe that satisfying I) and II) of the mixed tête-à-tête property in
Definition 8.4 is equivalent to satisfying:
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I’) For all i = 0, . . . , d−1, the homeomorphism φ̃Γ,i = Dδi ◦φΓ,i−1 is compatible with the gluing
gi, that is,

gi(x) = gi(y)⇒ gi(φ̃Γ,i(x)) = gi(φ̃Γ,i(y)).

Below we see the diagram which shows the construction of φΓ.

ΣΓ0 ΣΓ0 ΣΓ0

ΣΓ1 ΣΓ1 ΣΓ1

ΣΓ2 ΣΓ2 ΣΓ2

...
...

...
...

...

ΣΓd ΣΓd ΣΓd

Σ Σ

φΓ,−1

g0

Dδ0

g0

g1

φΓ,0 Dδ1

g1

g2

φΓ,1 Dδ2

g2

gd

φΓ,d−1 Dδd

gd

φΓ=φΓ,d

(9.10)

We make a small remark before proving that mixed tête-à-tête twists are pseudo-periodic
automorphisms.

Remark 9.11. Given a automorphism φ of a surface Σ with ∂Σ 6= ∅. Let C be a connected
component of ∂Σ such that φ|C is a rotation by c ∈ [0, 1). Let A be a compact collar neighborhood
of C (isomorphic to C×I) in Σ. Let η : S1×I → A be a parametrization ofA, with φ(S1×{1}) = C.
Up to isotopy, we can assume that the restriction of φ to A satisfies

η−1 ◦ φ|A ◦ η(x, t) = (x+ c, t).

Proposition 9.12. The homeomorphism φΓ,i is pseudo-periodic for all i = 0, ..., d. In particular,
φΓ is pseudo-periodic.

Proof. The mapping φΓ,0 is periodic. Assume φΓ,i−1 is pseudo-periodic. Let’s see so is φΓ,i.
Choose a collar neighborhood U i of Γ̃i, invariant by φΓ,i−1. We denote by U ij,1, . . . ,U ij,αj any
set of its connected annular components permuted by φΓ,i−1 such that φΓ,i−1(U ij,k) = U ij,k+1.
Similarly to Remark 9.11 we can assume that, up to isotopy fixing the action on the boundary, the
homeomorphism φΓ,i−1 satisfies that for some parametrizations ηij,k : S1 × I → U ij,k we have that

p2 ◦ (ηij,k+1)−1 ◦ φΓ,i−1|Ui
j,k
◦ ηij,k(x, t) = p2 ◦ (ηij,k+1)−1 ◦ φΓ,i−1|Ui

j,k
◦ ηij,k(x, t′)

for every t, t′ ∈ I where p2 : S1 × I → S1 is the canonical projection.
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Now we consider φ̃Γ,i := Dδi ◦ φΓ,i−1 as in (eq. (9.5)). The curves Cij,k = ηij,k(S1 × {0}) are
invariant by φ̃Γ,i. These curves separate ΣΓi in two pieces: U i and its complementary that we call
B. After quotienting by gi, we get a φΓ,i-invariant piece that is gi(B) ≈ B and another one that
is gi(U i). The restriction of φΓ,i to gi(B) is conjugate to φΓ,i−1 and then pseudo-periodic. The
restriction to gi(U i) has an invariant spine that is gi(Γ̃i) and then, by Lemma 2.13, it is boundary
free isotopic to a periodic one. Then, we have seen that φΓ,i is pseudo-periodic.

Remark 9.13. The screw number associated to the orbit of an invariant annuli at the curve Cij,k
that appears in the previous proof is

s(Cij,k) = −
∑
k

δ1
j,k/l(Γ̃1

j,1). (9.14)

We check this by giving a more elaborated construction that the one in the proof of Proposi-
tion 9.12 from which the computation of the screw number follows easily.

Let Γ̃ij,1, . . . , Γ̃ij,αj be a set of boundary components of ΣΓi contained in Γ̃i and cyclically
permuted by φΓ,i−1. Let Aij,k annular neighborhoods of them as in the previous proof such that
φΓ,i−1(U ij,k) = U ij,k+1.

Since φαΓ,i−1|Uij,1 is periodic, we can choose coordinates/parametrization rij,1 from S1 × [0, 1]
(with S1 ≈ R/Z of total length 1) to U ij,1 with respect to which φαΓ,i−1|Uij,1 is a rotation of the
annulus, that is

(rij,1)−1 ◦ φαjΓ,i−1 ◦ r
i
j,1(x, t) = (x+ τi−1, t),

where τi−1 is the rotation number rot(φαjΓ,i−1|Γ̃i
j,i

) (note that τi−1 depends on the considered orbit

of annuli, not only on i). Assume Γ̃ij,k = rij,k(S1 × {1}). Let `(Γ̃ij,k) be the length of Γ̃ij,k. We
assume without loss of generality that rij,k|S1×{1} is a homothety of ratio `(Γ̃ij,k) onto Γ̃ij,k. Define
rij,k := φk−1

Γ,0 ◦ rij,1 for k = 2, . . . , αj − 1.
Define nowAij,k := rij,k(S1×[0, 1/2]) and Cij,k := rij,k(S1×{1/4}) (note that this system of curves

Cij,k is different from that of the previous proof but isotopic to it). We choose a representative of the
boundary Dehn twists Dδi (defined up to isotopy fixing the boundary) performing all the twisting
in the annuli Aij,k. More precisely we can assume Dδi is expressed on U ij,k in the coordinates rij,k
as follows:

(rij,k+1)−1 ◦ Dδi ◦ rij,k(x, t) :=

 (x+ 2 · t · δij,k/`(Γ̃ij,k), t) if 0 ≤ t ≤ 1/2

(x+ δij,k/`(Γ̃ij,k), t) if 1/2 ≤ t ≤ 1

where we denote by δij,k := δi(gi(Γ̃ij,k)) with gi : ΣΓi → ΣΓi+1 the gluing function.
Then, we find that φ̃Γ,i := Dδi ◦ φΓ,i−1 satisfies that

(rij,1)−1 ◦ φ̃αjΓ,i ◦ r
i
j,1(x, t) =


(
x+ τi−1 + 2 · t ·

∑
k δ

i
j,k/`(Γ̃ij,1), t

)
if 0 ≤ t ≤ 1/2(

x+ τi−1 +
∑
k δ

i
j,k/`(Γ̃ij,1), t

)
if 1/2 ≤ t ≤ 1

(9.15)

where τi−1 = rot(φαjΓ,i−1|Γ̃i
j,i

) is the rotation number of φαjΓ,i−1 at Γ̃ij,1. Recall that this rotation

number is computed orienting Γ̃ij,1 with the orientation induced by relative safe walks, that is, the
opposite as the orientation that it inherits as boundary component of ΣΓi .

76



Mixed tête-à-tête twists Chapter 9

From the expression in (eq. (9.15)) we see that the restriction of φ̃αjΓ,i to Aij,k is conjugated
to Ds,τi−1 (note that we have to re-parametrize t = t/2 in order to get the expression of Ds,τi−1

which is defined in S1 × [0, 1]) with s the opposite of the expression in (eq. (9.14)) . Applying
Definition 2.44, we get that the screw number at Aij,k are given exactly by by the expression
(eq. (9.14)).

By Definition 2.44 this computes the screw number at Cij,k since the mapping φ̃Γ,i, after taken
the quotient by gi, goes down to a homeomorphism that is periodic restricted to gi(U ij \Aij) where
U ij = ∪kU ij,k and Aij = ∪kAij,k, and to pseudo-periodic homeomorphism of ΣΓi \ U i ⊆ ΣΓi+1 in a
almost-canonical form (see Remark 2.33).

Corollary 9.16. A mixed tête-à-tête twist has strictly positive fractional Dehn twists and negative
screw numbers.

Proof. The statement on the fractional Dehn twists follows from the fact that pure tête-à-tête
graph have positive fractional Dehn twist coefficients. And the statement on the screw numbers
follow from the previous Remark 9.13.

Remark 9.17. Let (Γ•, A•, δ•) be a a mixed tête-à-tête graph. Let Σ be a relative thickening of
(Γ, A), that is, an embedding (Γ, A) ↪→ (Σ, ∂Σ) such that Σ regular retracts to Γ. Let ∂1Σ be the
union of the boundary components of Σ not contained in A.

For the sake of simplicity in notation we have worked out the construction of φΓ A• = ∅
during the construction. But the general case is completely analogous. That is, a relative mixed
tête-à-tête graph embedded in its thickening defines, up to isotopy fixing ∂1Σ, and also relative to
the action on A, a pseudo-periodic homeomorphism φΓ of Σ.

We state three more remarks that are useful for the next chapter.

Remark 9.18. We make the following observation that is used in Theorem 10.7.
Let (Γ•, A•, δ•) be a relative mixed tête-à-tête graph. For any choice of product structures on

(ΣΓ1)ΓΓ1 , the relative tête-à-tête homeomorphism φΓ,0 : ΣΓ1 → ΣΓ1 is, by definition, an isometry
restricted to Γ̃1∪ (A0 \A1). Recall that in the construction, for simplicity of notation, we assumed
A = ∅ but it is not always the case.

Observe now that Dδ1 |Γ̃1 is also an isometry by definition of boundary Dehn twist. Also
Dδ1 |A0\A1 = id. We can conclude that the induced φΓ,1|A0\A2 is an isometry. The same argument
extends to the rest of the filtered graph, so we conclude that for any choice of product structure,
the mixed tête-à-tête homeomorphism φΓ satisfies that its restriction to the relative boundaries
φΓ|A is an isometry.

Remark 9.19. Observe that if (Γ•, δ•) is a mixed tête-à-tête graph. Then for each i = 1, . . . , `
there is an induced filtration on ΓΓi of depth i such that (ΓΓi+1 , Γ̃i+1) is a relative mixed tête-à-tête
graph with the functions δ0, . . . , δi.

Remark 9.20. Note that for mixed tête-à-tête graphs it is not true that p 7→ γp(δ(p)) gives a
continuous mapping from Γ to Γ.

However, there is a similar result for each level of the filtration. The map

σi : ΓiΓi+1 → ΓiΓi+1

that sends a point p ∈ ΓiΓi+1 to the end point of its mixed safe walk in the relative mixed tête-à-tête
graph (ΓΓi+1 , Γ̃i+1) is periodic. This can be proved using the argument that showed that the map
σΓ is periodic in a pure tête-à-tête graph (it is contained in Lemma 6.8 (2) and Corollary 6.10 (4))
together with Remark 9.18.
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In Examples C.11, C.19 and C.38, one can find detailed examples of mixed tête-à-tête graphs
embedded in their thickenings so that the produce mixed tête-à-tête twists. Some of these examples
use the main theorem of the next chapter in the construction. Nevertheless, one can skip directly to
the description of the graph, lengths and δ functions to check that it is actually a mixed tête-à-tête
graph.
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Chapter 10

Realization theorem

Chapter 9 is the main requirement for this chapter and we recall that the last section of Chapter 2
is also heavily used. On the other hand Chapter 5 contains the basic definitions to understand the
corollary to the main theorem of this chapter.

In this chapter we prove Theorem 10.7 which is the main result of this work. It appeared
previously in a joint work with Baldur Sigurðsson in [PS17]. This result characterizes the pseudo-
periodic mapping classes that can be realized by mixed tête-à-tête graphs as those that have
positive fractional Dehn twists at all fixed boundary components and negative screw numbers at
all separating annuli.

As noted in the introduction, this theorem is a major improvement of a theorem that first
appear in the joint work [FPP17] where we proved that mixed tête-à-tête twists are enough to
model a restricted class of pseudo-periodic automorphisms that include all monodromies of plane
branches. The specific improvements and what is essentially new of this theorem with respect to
the previous one is detailed in Remark 10.8 after some notation has been introduced. It is worth
noting that the expected scope of mixed tête-à-tête graphs when we gave the definition was to
model monodromies of isolated plane curves.

Let φ : Σ→ Σ be a pseudo-periodic automorphism. For the remaining of this work we impose
the following restrictions on φ:

(1) The screw numbers are all negative.

(2) It leaves at least one boundary component pointwise fixed and the fractional Dehn twist
coefficients at these boundary components are positive.

Denote by ∂1Σ ⊂ ∂Σ the union of the boundary components pointwise fixed by φ. We assume
that φ is given in some almost-canonical form as in Remark 2.33.

Notation 10.1. We define a graph G(φ) associated to a given almost-canonical form:

(1) It has a vertex v for each subsurface of Σ\A whose connected components are cyclically
permuted by φ. Let N denote the set of vertices of G(φ).
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(2) For each set of annuli in A permuted cyclically it has an edge connecting the vertices corre-
sponding to the surfaces on each side of the collection of annuli.

Definition 10.2. We say that a function L : N → Z≥0 is a filtering function for G(φ) if it
satisfies:

(1) If v, v′ ∈ N are connected by an edge, then L(v) 6= L(v′).

(2) If v ∈ N , then either v has a neighbor v′ ∈ N with L(v) > L(v′), or L(v) = 0 and Σv
contains a component of ∂1Σ.

Condition (2) above implies that for L to be a filtering function, L−1(0) must only contain
vertices corresponding to subsurfaces of Σ\A that contain some component of ∂1Σ. That same
condition assures us that L−1(0) is non-empty.

Definition 10.3. Define the distance function D : N → Z≥0 as follows:

(1) D(v) = 0 for all v with Σv ∩ ∂1Σ 6= ∅.

(2) D(v) is the distance to the set D−1(0), that is the number of edges of the smallest bamboo
in G(φ) connecting v with some vertex in D−1(0).

Remark 10.4. Take some φ : Σ → Σ in canonical form and observe that the function D might
not be a filtering function. It can happen that there are two adjacent vertices v, v′ ∈ N with
D(v) = D(v′) or even that there is a vertex with a loop based at it (see Example C.38). When this
happens, we can modify the canonical form into an almost-canonical form for which the function
D is a filtering function:

Let φ : Σ→ Σ be an automorphism in canonical form such thatD(v) = D(v′) for some adjacent
v, v′ ∈ N . Take one edge joining v and v′, this edges corresponds to a set of annuli A1, . . . ,Ak
being permuted cyclically by φ. For each i = 1, . . . , k, let ηi : S1 × I → Ai be parametrizations
as in Lemma 2.45 if φk does not interchange boundary components, and parametrizations as in
Lemma 2.48 if φk does exchange boundary components. Let Ci ⊂ Ai be the core curves of the
annuli. We distinguish what we do in the two cases:

(1) The core curves are not amphidrome. By Remark 2.35 we can isotope φ on the annuli Ai to a
automorphism φ̃ without changing the action of φ on ∂Ai so that in the annuli ηi(S1× [ 1

3 ,
2
3 ])

it is periodic. In doing so, we can redefine the canonical form to an almost-canonical form
as follows.

(a) For each i = 1, . . . , k take Ci out from the set C and include ηi(S1×{ 1
6}) and ηi(S

1×{ 5
6}).

(b) For each i = 1, . . . , k take Ai out of A and include ηi(S1 × [0, 1/3]) and ηi(S1 × [ 2
3 , 1]).

It is clear that this new set of data defines an almost-canonical form for φ̃ and that on
the corresponding G(φ̃) the vertices v and v′ are no longer adjacent since a new vertex
corresponding to the surface

⋃
i ηi(S1 × [ 1

3 ,
2
3 ]) appears between them.

(2) The core curves are amphidrome. This case is completely analogous to case (1) with the
advantage that by definition of D̃s in Notation 2.41, it is already periodic in the central
annuli.

It is clear that after performing (1) or (2) (accordingly) for all pairs of adjacent vertices v, v′
with D(v) = D(v′) we provide φ with an almost-canonical whose distance function D is a filtering
function.
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Remark 10.5. We observe that orbits of amphidrome annuli A1, . . . ,Ai correspond to loops in
G(φ). So we find that after performing the modification of Remark 10.4, the almost-canonical
form of φ does not have any amphidrome annuli in A. However, some of the surfaces of Σ \ A are
now amphidrome annuli.

Notation 10.6. We assume φ is in the almost-canonical form induced from the canonical form
after performing the modification described in Remark 10.4. We denote by Σ̂ the closure of Σ \ A
in Σ. Let Ĝ(φ) be a graph constructed as follows:

(1) It has a vertex for each connected component of Σ \ C.

(2) There are as many edges joining two vertices as curves in C intersect the two surfaces
corresponding to those vertices.

We observe that the previously defined G(φ) is nothing but the quotient of Ĝ(φ) by the action
induced by φ on the connected components of Σ \ A.

Let N̂ be the set of vertices of Ĝ(φ). Since φ permutes the surfaces in Σ̂, it induces a permuta-
tion of the set N̂ which we denote by σφ. We label the set N̂ , as well as the connected components
of Σ̂ and the connected components of A in the following way:

(1) Label the vertices that correspond to surfaces containing components of ∂1Σ by v0
1,1, v

0
2,1, . . . , v

0
β0,1.

Let V 0 be the union of these vertices. Note that σφ(v0
j,1) = v0

j,1 for all j = 1, . . . , β0.

(2) Let D̂ : N̂ → Z≥0 be the distance function to V 0, that is, D̂(v) is the number of edges
of the smallest path in Ĝ(φ) that joins v with V 0. Let V i := D̂−1(i). Observe that the
permutation σφ leaves the set V i invariant. There is a labeling of V i induced by the orbits
of σφ: suppose it has βi different orbits. For each j = 1, . . . , βi, we label the vertices in that
orbit by vij,k with k = 1, . . . , αj so that σφ(vij,k) = vij,k+1 and σφ(vij,αj ) = vij,1.

Denote by Σij,k the surface in Σ̂ corresponding to the vertex vij,k. Denote by Σi the union
of the surfaces corresponding to the vertices in V i. We denote by Σ≤i the union of Σ0, . . . ,Σi
and the annuli in between them. We recall that αj is the smallest positive number such that
φαj (Σij,k) = Σij,k.

Theorem 10.7. Let φ : Σ→ Σ be a pseudo-periodic automorphism satisfying assumptions (1) and
(2) at the beginning of this chapter. Then there exists a relative mixed tête-à-tête graph (Γ•, A•, δ•)
with Γ embedded in Σ such that:

(1) δi is a constant function for each i = 1, . . . , d.

(2) [φ]∂1Σ = [φΓ]∂1Σ.

(3) φ|∂Σ\∂1Σ = φΓ|∂Σ\∂1Σ.

(4) Filtration indices are induced by the distance function D for the almost-canonical form in-
duced from the canonical form by Remark 10.4.

Remark 10.8. As said in the introduction, in [FPP17] it was proved a similar but weaker result
that had as a consequence that the class of automorphisms modeled by mixed tête-à-tête twists
included monodromies of isolated plane branches.

More concretely, [FPP17, Theorem 9.4] proves the statement of Theorem 10.7 adding the
hypothesis:
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(i) That (in the notation of this article) the graph Ĝ(φ) is a tree. Observe that this is a strong
condition on the automorphism φ that implies, for example, that G(φ) is also a tree. In
particular, amphidrome curves do not appear in those automorphisms.

(ii) That all the boundary components in ∂1Σ are contained in a single component of Σ \ C.

One can check in [A’C73] that the monodromy of a plane branch clearly satisfies (i) and (ii).
Also, the condition (1) that the functions δi are constant is not imposed in [FPP17].

Now we state and prove Lemma 10.9 and Lemma 10.10 which are used in the proof of Theo-
rem 10.7.

Lemma 10.9. Let φ : Σ → Σ be a periodic automorphism of order n. Let C = C1 t · · · t Ck be
a non-empty collection of boundary components of Σ such that φ(Ci) = Ci, that is, each one is
invariant by φ. For each i let mi be a metric on Ci invariant by φ. Then there exists a relative
metric ribbon graph (Γ, A) ↪→ (Σ, ∂Σ \ C) and parametrizations ri : S1 × I → Σ̃i of the cylinders
of ΣΓ such that:

(i) φ(Γ) = Γ and the metric of Γ is also invariant by φ.

(ii) l(Γ̃i) = l(Ci).

(iii) The projection from Ci to Γ̃i induced by ri is an isometry, that is, the map

r(θ, 0) 7→ r(θ, 1)

is an isometry.

(iv) φ sends retractions lines (i.e. {θ} × I) to retractions lines.

Proof. The proof uses essentially the same technique used in the proof of Theorems 7.18 and 7.30.
Let Σφ be the orbit surface and suppose it has genus g and r ≥ k boundary components. Let

p : Σ→ Σφ be the induced branch cover.
Take any relative spine Γφ of Σφ that:

(1) Contains all branch points of the map p.

(2) Contains the boundary components p(∂Σ \ C).

(3) Admits a metric such that p(Ci) retracts to a part of the graph of length l(Ci)/n.

We observe that conditions (1) are (2) are trivial to get. Condition 3) follows because of
the proof of Theorems 7.18 and 7.30. There, the conditions on the metric of the graph Γφ come
from the fractional Dehn twist coefficients of φ, however, we do not use that these numbers come
from φ in finding the appropiate graph so exactly the same argument applies imposing the metric
conditions with any other positive numbers.

Observe that since the metric on Ci is invariant by φ, there is a metric induced on p(Ci) for
i = 1, . . . k. Now choose any parametrizations (or product structures) of the cylinders in ΣφΓφ such
that their retractions lines induce an isometry from p(Ci) to Γ̃φi .

Define Γ := p−1(Γφ). By construction, this graph satisfies (i) and (ii). The preimage by p
of retraction lines on Σφ gives rise to parametrizations of the cylinders in ΣΓ satisfying iii) and
iv).
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Lemma 10.10. Let (Γ•, B•, δ•) be a relative mixed tête-à-tête graph embedded in a surface Σ and
let C1, . . . , Ck ⊂ B be a set of relative boundary components cyclically permuted by φ. Suppose that
all the vertices in these boundary components are of valency 3. Then we can modify the metric
structure of the graph to produce a mixed tête-à-tête graph (Γ̂•, B̂•, δ•) with l(Ci) as small as we
want and with [φΓ]∂1Σ = [φΓ̂]∂1Σ.

Proof. Let e1, . . . , em be the edges comprising C1, where ej has length lj . Let v1, . . . , vm be the
vertices of these edges, so that ei connects vi and vi+1 (here, indices are taken modulo m). Let
fi,j , for j = 1, . . . , ni be the edges adjacent to vi, other than ei, ei+1, in such a way that the edges
have the cyclic order ei+1, ei, fi,1, . . . , fi,ni . Let ε < l(C1). We would like to replace C1 with a
circle of length l(C1)− ε. We assume that l1 = mini li.

If ε/m ≤ l1, then we do the following:

• Each edge ei is modified to have length li − ε/m.

• For any i with ni = 1, the length of fi,1 is increased by ε/2m.

• For any i with ni > 1, extrude an edge gi from the vertex vi of length ε/2m so that one end
of gi is adjacent to ei, ei+1 and gi, and the other is adjacent to fi,1, . . . , fi,ni and gi, with
these cyclic orders.

In the case when ε/m > l1, we execute the above procedure with ε replaced by m · l1, which results
in a circle made up of fewer edges. After finitely many steps, we obtain the desired length for C1.

l1

l2

l3

l(f1,1)

l2 − l1
l3 − l1

l(f3,1) + l1/2

l(f1,1) + l1/2

l(f2,1) + l1/2 ε/4

Step 1 Step 2

l(f2,1)

l(f3,1)

v1

v2

v3

l(f3,1) + l1/2 + ε/4

l(f1,1) + l1/2

l(f2,1) + l1/2

l3 − l1 − ε/2
l2 − l1 − ε/2

Figure 10.11: Example of modification at a boundary component. Suppose that l1 < l2 < l3. In step 1
we reduce the length of the circle by l1. In step 2 we reduce it by ε.

Proof of Theorem 10.7. By definition, all surfaces corresponding to vertices in D−1(0) are con-
nected because they are invariant by φ. We have that φ|Σ0

j,1
: Σ0

j,1 → Σ0
j,1 is periodic outside a

neighborhood of ∂1Σ ∩ Σ0
j,1 and that the fractional Dehn twist coefficients with respect to all the

components in ∂1Σ ∩ Σ0
j,1 are postive. Denote B0

j,1 := ∂Σ0
j,1 \ ∂1Σ. By Theorem 7.30 for each

j = 1, . . . , β0, there is a relative tête-à-tête graph (Γ0
j,1, B

0
j,1) embedded in Σ0

j,1 modeling φ|Γ0
j,1
.

Denote Γ[0] :=
⊔
j Γ0

j,1 and B[0] :=
⊔
j B

0
j,1. Then (Γ[0], B[0], δ0) is a relative mixed tête-à-tête

graph of depth 0 for Σ≤0 (it is just a relative tête-à-tête graph) such that:

(1) δ0|Σ0
j,1

= π for all j = 1, . . . , β0.

(2) [φ|Σ0 ]∂1Σ0 = [φΓ[0]]∂1Σ0 .
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Chapter 10 Realization theorem

(3) φ|B[0] = φΓ[0]|B[0].

(4) All the vertices on B[0] have valency 3.

Suppose that we have a relative mixed tête-à-tête graph (Γ[a−1]•, B[a−1]•, δ[a−1]•) of depth
a embedded as a spine in Σ≤a and with B[a− 1] = ∂Σ≤a−1 \ ∂1Σ such that:

(1) δ[a− 1]i is a constant function for each i = 0, . . . , a− 1

(2) [φ|Σ≤a−1 ]∂1Σ≤a−1 = [φΓ[a−1]]∂1Σ≤a−1

(3) φ|B[a−1] = φΓ[a−1]|B[a−1].

(4) All the vertices on B[a− 1] have valency 3.

We recall that φΓ[a−1] denotes the mixed tête-à-tête automorphism induced by (Γ[a − 1]•, B[a −
1]•, δ[a − 1]•). We extend Γ[a − 1] to a mixed tête-à-tête graph Γ[a] satisfying (1) - (4). This
proves the theorem by induction. We focus on a particular orbit of surfaces. Fix j ∈ {1, . . . , βa}
and consider the surfaces Σaj,1, . . . ,Σaj,αj ⊂ Σa with φ(Σaj,k) = Σaj,k+1 and φ(Σaj,αj ) = Σaj,1.

For each j, we distinguish two types of boundary components in the orbit
⊔
k Σaj,k:

Type I) Boundary components that are connected to an annulus whose other end is in
Σa−1, we denote these by ∂I

Type II) The rest: boundary components that are in ∂Σ and boundary components that
are connected to an annulus whose other end is in Σa+1, we denote these by ∂II

Since we are doing the construction for an orbit, we use local notation in which not all the
indices are specified so that the formulae is easier to read.

Let AI denote the union of annuli connected to boundary components in ∂I . These annuli are
permuted by φ. Suppose that there are r′ different orbits of annuli A1, . . .Ar′ , and let `i ∈ N be
the length of the orbit Ai. Let si be the screw number of the orbit Ai (recall Definition 2.44 and
Remark 2.47). Let Bi,1, . . . ,Bi,`i be the orbit of boundary components of Σa−1 that are contained
in the orbit Ai. The metric of Γ[a − 1] gives lengths to these boundary components and all the
boundary components in the same orbit have the same length l(Bi,1) ∈ R+. Consider the positive
real numbers

s1

`1
l(B1,1), . . . , sr

′

`r′
l(Br′,1) (10.12)

Using Lemma 10.10, we modify the metric structure of Γ[a− 1] near each orbit Bi so that

s1

`1
l(B1,1) = · · · = sr′

`r′
l(Br′,1).

This is possible since we can make l(Bi,1) as small as needed.
For each i = 1, . . . , r′, let Ai,1, . . .Ai,`i be the annuli in the orbit Ai and let B′i,1, . . .B′i,`i be

the boundary components that they share with Σa. Take parametrizations ηi,1, . . . , η`i,1 given by
Lemma 2.45. The metric on the boundary components of B[a−1] and the parametrizations induce
a metric on all the boundary components in ∂I that is invariant by φ.

We observe that φαj |Σa
j,1

: Σaj,1 → Σaj,1 is periodic and ∂I ∩ Σaj,1 is a subset of boundary
components that have a metric. So we can apply Lemma 10.9 and we get a relative metric
ribbon graph (Γaj,1, ∂II ∩ Γaj,1) and parametrizations of each cylinder in (Σaj,1)Γa

j,1
with properties

i), . . . , iv) in the the Lemma. We can translate this construction by φ to the rest of the surfaces
Σaj,2, . . . ,Σaj,αj . So we get graphs Γaj,k ↪→ Σaj,k and parametrizations for the cylinders in (Σaj,k)Γa

j,k
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for all k = 1, . . . , αj . The construction assures us that φ|Σa
j,αj

: Σaj,αj → Σaj,1 sends Γaj,αj to Γaj,1
isometrically and that it takes retractions lines of the parametrizations in Σaj,αj to retraction lines
in Σaj,1.

We proceed to extend Γ[a− 1] to the orbit of Σaj,1. For each i = 1, . . . , r′ do the following:

Step 1. Remove Bi,1, . . . ,Bi,`i from Γ[a− 1].

Step 2. Take ε > 0 small enough. Decrease by ε the metric on all the edges of Γ[a − 1]
adjacent to vertices in Bi,1, . . . ,Bi,`i .

Step 3. Add to the graph the retraction lines of the parametrizations ηi,1, . . . , ηi,`i that
were adjacent to vertices in Bi,1, . . . ,Bi,`i . That is, if v ∈ Bi,1 ⊂ Ai,1 include
ηi,1({v} × I). Define the length of these segments as ε/2.

Step 4. Add to the graph the retraction lines of the parametrizations of the cylinders
(Σaj,k)Γa

j,k
that start at the ends of the lines added in the previous step. Define

the length of these segments as ε/2.

Step 5. Add to the graph the graphs Γaj,1, . . . ,Γaj,αj .

We repeat this process for all orbits of suraces in Σa and so we extend the graph Γ[a − 1] to
all Σa. Denote

Γ[a]a :=
⊔
j,k

Γaj,k.

Denote the resulting graph by Γ[a].
We make the following observation: (Γ[a]Γ[a]a , Γ̃[a]a) is by construction isometric to (Γ[a −

1],B[a − 1]). We denote the induced relative mixed tête-à-tête automorphism by φΓ[a]Γ[a]a which
acts on Σ≤aΓ[a]a . By the previous observation there is an induced filtration on Γ[a]:

Γ[a] = Γ[a]0 ⊃ Γ[a]1 ⊃ · · · ⊃ Γ[a]a−1 ⊃ Γ[a]a

and similarly for the relative parts. We define δa : Γ[a]a → R≥0 to be the constant function equal
to the numbers eq. (10.12) (which are by construction the same number).

By the choice of δa and the parametrizations on the annuli that join Σa−1 with Σa we find
that

Dδa ◦ φΓΓ[a] : ΣΓ[a]a → ΣΓ[a]a

is compatible with the gluing ga+1. So that (Γ[a],B[a]) is a relative mixed tête-à-tête graph follows
from I ′) in Remark 9.9.

We have already made sure in the construction that (1) and (4) hold in Γ[a].
Let’s show that (2) and (3) also hold. Observe that by construction φ leaves Γ[a] invariant

so there is an automorphism φ̃a : ΣΓ[a]a → ΣΓ[a]a induced. This automoprhism coincides with
Dδa ◦ φΓΓ[a] on Γ̃[a] by the choice of the parametrizations of the annuli A and by the choice of
the number δa. Also, by the choice of δa and Remark 9.13 we see that they have the same screw
numbers on the annuli connecting the level a− 1 and the level a. From this discussion we get (2)
and (3) and finish the proof.

Remark 10.13. From the proof we get as an important consequence that a more restrictive
definition of a mixed tête-à-tête graph is valid: it is enough to consider mixed tête-à-tête graphs
where δi is a constant function (i.e. a number) for all i = 0, . . . , `.
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Corollary 10.14. The monodromy associated with a reduced holomorphic function germ defined
on an isolated surface singularity is a mixed tête-à-tête twist. Conversely, let C(Γ) be the cone
over the open book associated with a mixed tête-à-tête graph. Then there exists a complex structure
on C(Γ) and a reduced holomorphic function germ f : C(Γ) → C inducing φΓ as the monodromy
of its Milnor fibration.

Proof. The plumbing graph associated to a reduced holomorphic function germ has positive signs
at all edges and induces positive multiplicity weights (this just follows from the computation of
the resolution graph of the singularity). Then by Lemma 4.24, we find that this monodromy has
negative screw numbers and positive fractional Dehn twist coefficients. Therefore, we conclude the
first part of the statement from Theorem 10.7.

The second part of the statement follows from Theorem 10.7 and [NP07, Theorem 2.1] (the
relevant part of this theorem is in Theorem 5.8 in this work).

Remark 10.15. In B.2 we give an explicit mixed tête-à-tête graph for any given isolated plane
curve singularity, so we actually prove that mixed tête-à-tête graph model monodromies on reduced
plane branches without using Theorem 10.7. The graph that we produce in the appendix is different
from the graph produced by the construction of Theorem 10.7.
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Chapter 11

Tête-à-tête graphs and Seifert
manifolds

The first part of Chapters 3 and 4 are the preliminaries for this chapter.
The homeomorphism type of mapping torus of an automorphism φ : Σ → Σ depends only on

the conjugacy class of the mapping class [φ]. In [Eps72] Epstein proved that a 3-manifold is a
Seifert manifold if and only if it admits a foliation by circles. From this, we can conclude that
the mapping torus of a periodic mapping class is a Seifert manifold. On the other hand, given an
oriented surface Σ properly embedded in a fibered-oriented Seifert manifold Y and transverse to
all the fibers, has a monodromy induced on it (by following the flow of the fibers). Since the fibers
are circles, this monodromy is periodic.

In this chapter we describe an algorithm that, given a general, relative or pure tête-à-tête
graph, produces a star-shaped plumbing graph together with a the horizontal surface. We also
describe the algorithm that goes in the opposite direction.

11.1 From general tête-à-tête graph to star-shaped
plumbing graph

Let (Γ,P, σ) be a general tête-à-tête graph. For simplicity, we suppose that Γ is connected. This
includes as particular cases pure tête-à-tête graphs and relative tête-à-tête graphs. Let φΓ be a
truly periodic representative of the tête-à-tête automorphism and let ΣφΓ be the mapping torus of
the the diffeomorphism φΓ : Σ → Σ. The mapping torus given by a periodic diffeomorphism of a
surface is a Seifert manifold. We describe an algorithm that takes (Γ,P, σ) as input and returns
as output:
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Chapter 11 Tête-à-tête graphs and Seifert manifolds

(1) The invariants of a Seifert manifold:

M(g, r; (1, b), (α1, β1), . . . , (αk, βk))

diffeomorphic to the mapping torus ΣφΓ . It is represented by a star-shaped plumbing graph
Λ corresponding to the Seifert manifold.

(2) A tuple (p1, . . . , pµ, q) with pi ∈ Z/qZ and q ∈ Z>0 representing the horizontal surface given
by Σ with respect to some basis of the homology H1(B;Z) ' Zµ of the base space B of Y .

Step 1. We consider ΓφΓ , that is the quotient space Γ/ ∼ where ∼ is the equivalence relation
induced by the action of the safe walks on the graph. This graph is nothing but the image of Γ by
the projection of the branched cover p : Σ→ ΣφΓ onto the orbit space.

The map p|Γ : Γ→ ΓφΓ induces a ribbon graph structure on ΓφΓ . We can easily get the genus
g and number of boundary components r of the thickening of ΓφΓ from the combinatorics of the
graph. This gives us the first two invariants of the Seifert manifold.

Step 2. Let sv(Γ) be the set of points with non trivial isotropy subgroup in < φΓ >. This is
the set of branch points of p : Σ→ ΣφΓ by definition.

Let v ∈ sv(Γ). Then there exists m < n with n = m · s such that v is a fixed point of φmΓ (take
m the smallest natural number satsifying that property). We can therefore use Corollary 3.8. We
get that φmΓ acts as rotation with rotation number p/s in a small disk centered at v. So around the
fiber corresponding to the vertex v, the Seifert manifold is diffeomorphic fiberwise to a p, s-torus.
and the corresponding Seifert pair (αv, βv) is given by (αv, βv) = (s,−b) with bp ≡ 1 mod q.

We do this for every vertex in sv(Γ) and we get all the Seifert pairs.
Step 3. Since we have already found a complete set of Seifert invariants, we have that

M(g, r; (α1, β1), . . . , (αk, βk))

is diffeomorphic to the mapping torus of the pair (Σ, φΓ).
Now we use Proposition 3.17 to get the normalized form of the plumbing graph associated to

the Seifert manifold.
Step 4. For this step, recall Section 4.1 and notation introduced there. Fix a basis [S1

1 ], . . . , [S1
µ]

of H1(B;Z) where S1
i is a simple closed curve contained in ΓφΓ .

Let m := lcm(α1, . . . , αk). Observe that necessarily m|n so n = m · q (with n the order of φΓ).
This number q that we have found is the last term of the cohomology element we are looking

for. Of course, it is also the oriented intersection number of Γ̂ = π(Γ) with C. (recall π was the
projection Y → Y/cm =: Ŷ ).

Pick any basis of H1(B;Z) by picking a collection of circles S1
1 , . . . , S

1
k contained in the orbit

graph ΓφΓ ⊂ B that generate the homology of the graph.
Now if we intersect the graph Γ/cm ∩ S1

i × C with the torus over one of the representatives
of the basis, we get a collection of ki closed curves, each one isotopic to the curve of slope p′i/q′i
where q′i · ki = q and pi = p′i · ki = pi. This number, pi, is the i− th coordinate of the cohomology
element with respect to the fixed basis.

We can compute p1, . . . , pk directly. Let S1
i be one of the generators of H1(ΓφΓ ;Z). Let

Ŝ1
i := Γ/cm ∩S1

i × S1 where S1
i × S1 ⊂ ΓφΓ × S1; and let S̃1

i := p|−1
Γ (Ŝ1

i ). Observe that Ŝ1
i consists

of ki disjoint circles and that ki divides q. Let q′i = q/ki.
Pick a point z ∈ S1

i which is not in the image by π of a special fiber. Then π̂−1(z) ∩ Γ/cm
consists of q points lying in the ki connected components of Ŝ1

i . Pick one of these connected
components and enumerate the corresponding q′i points in it using the orientation induced on that

90



Tête-à-tête graphs and Seifert manifolds Chapter 11

connected component by the given orientation of S1
i . Then we have the points z1, . . . , zq′

i
. We

observe that by construction, these points lie on the same fiber in Ŷ and this fiber is oriented.
Follow the fiber from z1 in the direction indicated by the orientation, the next point is zti , with
ti ∈ {1, . . . , q′i}. We therefore find that this connected component of Ŝ1

i lies in S1
i ×S1 as the curve

with slope (ti − 1)/q′i and so pi = (ti − 1) · ki.

11.2 From star-shaped plumbing graph to tête-à-
tête graphs

The input that we have is:

i) A Seifert fibering of a manifold Y .

ii) A horizontal surface given by an element in H1(B×S1;Z) that does not vanish on a typical
Seifert fiber.

The output is:

(1) A general, relative or pure tête-à-tête graph such the induced mapping toru is diffeomorphic
to the given plumbing manifold in the input. And such that the thickening of the graph,
represents the horizontal surface given.

Step 1. We start with a Seifert fibering M(g, r; (α1, β1, . . . , αk, βk).
We fix a model of the Seifert fibering as in Section 4.1. We recall that the model consists of

the following data:

i) The Seifert fibering s : Y → B where B is a surface of genus g and r boundary components.

ii) A collection of arcs {li} with i = 1, . . . , k properly embedded in B where the boundary of
these arcs lie in one chosen boundary component of B. These satisfy that when we cut along
one of them, say li we cut off a disk denoted by Di from B that contains the image of exactly
one special fiber, we denote the image of this fiber by xi.

iii) We have an identification of each solid torus s−1(Di) with the corresponding fibered solid
torus Tpi,qi with qi = αi and −piβi ≡ 1 mod αi and 0 < pi < qi.

Step 2. Observe that B is homotopic to a wedge of µ = 2g − r + 1 circles that does not
contain any xi for i = 1, . . . , i. We can see this wedge as a spine embedded in B. Denote by c
the common point of all the circles. Now we embed disjoint segments ei with i = 1, . . . , k where
each one satisfies that one of its ends lies in the spine and the other end lies in xi. Also, they do
not intersect the wedge of circles at any other point and they also ei does not intersect any Dj for
j 6= i. We denote the union of the wedge and these segments by Λ̃ and observe that Λ̃ is a spine
of B.

Step 3. We suppose that the element in H1(Ŷ ;Z) given is irreducible, otherwise if it is of the
form k(p′1, . . . , p′µ, q′) with (p′1, . . . , p′µ, q′) irreducible, we take the irreducible part, carry out the
following construction of the corresponding horizontal surface and then take k parallel copies of
this surface.

Recall diagram 4.3 for the definition of the maps s, ŝ and π.
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Once and for all, fix a trivialization Ŷ ' B× S1. We assume that the element (p1, . . . , pµ, q) ∈
H1(Ŷ ;Z) is expressed with respect to the dual basis [S1], . . . , [Sµ], [C] where the first µ are circles
of the wedge embedded in B and [C] is the homology class of C := ŝ−1(c).

For each i = 1, . . . , µ, consider the torus ŝ−1(Si) which is naturally trivialized by the trivial-
ization of Ŷ . We pick in it ki copies of the curve of slope p′i/q′ where pi/q = kip

′
i/kiq

′. For each
i, the curves constructed this way in ŝ−1(Si) intersect q times the curve C. Hence we can isotope
them so that all of them intersect C in the same q points. We denote the union of these curves by
Λ̂′. We assume that Λ̂′ projects to Λ̃ \

⋃
ei by B × S1 → B.

By construction, Λ̂′ is a ribbon graph for the surface horizontal surface Ĥ ⊂ Ŷ . Observe that
s(Λ̂′) 6= Λ̃. However s(Λ̂′) is also a spine of B (it coincides with the wedge of circles in B).

Define Λ′ := π−1(Λ̂′). By the definition of π, this graph can also be constructed by taking
in each of the tori π−1(ŝ−1(Si)) = s−1(Si) , ki copies of the curve of slope p′i/n. Which by
construction all intersect in n points in s−1(c).

Step 4. Now we describe π−1(ŝ|−1
Ĥ

(ei)) for each i = 1, . . . , k. First we observe that it is equal
to s|−1

H (ei) which is a collection of q ·n/αi disjoint start shaped graphs. Each star-shaped piece has
αi. To find out the gluings of these arms with Λ′ one looks as the structure of s−1(Di) as a (c, αi)-
solid torus. To visualize it, place the q · n/αi star-shaped pieces in a solid cylinder D2 × [0, 1] and
identify top with botton by a c/αi) rotation. The fibers of the fibered torus give the monodromy
on the end of the arms and the attaching to Λ′.

We define Λ as the union of Λ′ with these star-shaped pieces
Step 5. The embedding of H in the Seifert manifold defines a diffeomorphism φ : H → H in

the following way. Let x ∈ H and follow the only fiber of the Seifert manifold that passes through
x in the direction indicated by its orientation, we define φ(x) as the next point of intersection of
that fiber with H.

To describe φ up to isotopy it is enough to give the rotation numbers of φ around each boundary
component of H plus some spine invariant by φ. By construction Λ is an invariant graph. The
fibers of the Seifert fibering give us an automorphism on the graph Λ. To get the rotation numbers,
we cut the thickening H along Λ and we get a collection of cylinders Λj × [0, 1] with j = 1, . . . , r′.

Now we invoke Theorem 7.33 if the monodromy leaves at least 1 boundary component invariant
and we invoke Theorem 7.40 if the monodromy does not leave any boundary component invariant.
This gives us a constructive method to find a graph (which in general will be different from⋃µ
i=1 Si

⋃k
j=1 ej) containing all branch points in B such that it is a retract of B and such that it

admits a metric that makes its preimage a tête-à-tête graph.
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Chapter 12

Mixed tête-à-tête graphs and
graph manifolds

The previous Chapter 11 and the last part of Chapters 3 and 4 are the preliminaries for this
chapter.

The mapping torus of a pseudo-periodic mapping class is a graph manifold. On the other hand,
a horizontal surface of a fibered-oriented graph manifold has a pseudo-periodic monodromy induced
on it. In this chapter we use the machinery developed in Chapter 4 to provide with algorithms
that travel between the world of mixed tête-à-tête graphs and certain fibrations of graph manifolds
over S1.

12.1 From open books to mixed tête-à-tête graphs

Suppose we are given:

(1) A graph manifold Y given by a plumbing graph Λ.

(2) A Waldhausen link L ⊂ Y .

(3) A homomorphism γ : H1(Y \L,Z)→ Z that does not vanish on the classes of generic Seifert
fibers of all Seifert pieces and whose associated system of multiplicities satisfies thatmv = +1
for all components Lv of L.

Section 4.3 provides the combinatorial data associated with the monodromy φ of the fibration
f so that f∗ = γ. Now, Theorem 10.7 produces a mixed tête-à-tête graph inducing φ. This
construction is made explicit in the proof of the theorem. This is done by first choosing relative
tête-à-tête graphs for those pieces in Y which contain a component of L. An iterative process
follows: choose an invariant spine of each neighboring piece; then the screw number of each orbit
of connecting annuli produces a parametrization of these annuli and some retraction lines of these
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parametrizations are used to connect the previously constructed graph with the new invariant
spines. This produces the desired mixed tête-à-tête graph.

12.2 From mixed tête-à-tête graphs to open books

In this section we describe an algorithm that works in the reverse direction of the previous al-
gorithm. That is, we start with a mixed tête-à-tête graph (Γ•, δ•) with a thickening Σ, and the
algorithm produces:

(1) A graph manifold Y represented by a plumbing graph Λ.

(2) A Waldhausen link (Y, L) such that Y \L is diffeomorphic to the mapping torus of the mixed
tête-à-tête automorphism φΓ.

(3) An element f∗ ∈ H1(Y \L;Z) given by a horizontal open book f : Y \L→ S1 that has fiber
diffeomorphic to Σ and whose monodromy is conjugate to that of φΓ.

First we are going to obtain the information about the Seifert pieces of Y . Recall that
φΓ,i|Γi

Γi+1
: ΓiΓi+1 → ΓiΓi+1 is a periodic automorphism. For each p ∈ ΓiΓi+1 ⊂ ΓΓi+1 we recall that

φΓ,i(p) is, by definition, the last point of the walk resulting from the concatenation γip ? · · · ? γ0
p .

Let ` be the depth of the filtration of Γ•. For each i = 0 . . . , ` we find that the graph ΓiΓi+1

and the restriction φΓ,i|Γi
Γi+1

give us

(1) The number of Seifert pieces that lie on the i-th level of the filtration. This is the number
of orbits of φΓ,i on the set of connected components of ΓiΓi+1 . For each Seifert piece, there
will be a node on Λ.

(2) The number of connected components in each orbit.

(3) The multiplicity mn corresponding to the node n of the corresponding Seifert piece which
is the order of φΓ,i|Γi

Γi+1
restricted to the corresponding orbit.

(4) By applying Steps 1-4 of the algorithm From general tête-à-tête graphs to star-shaped plumb-
ing graphs in Chapter 11, we get the decoration corresponding to the Euler numbers of the
arms of each Seifert piece.

Note that we leave the nodes without the Euler number decoration until the end.

12.1. We recall a piece of the algorithm in Chapter 11 which is be useful now. Suppose that
φΓ,i|Γi

Γi+1
has order n. If x ∈ ΓiΓi+1 is a point with non-trivial isotropy in 〈φΓ,i|Γi

Γi+1
〉, then there

exists a natural number 0 < k < n such that φΓ,i|kΓi
Γi+1

(x) = x and in this case, φΓ,i|kΓi
Γi+1

is a
rotation in a disk around x. Suppose that this rotation has rotation number p/q with q = n/k.
The rotation number is measured at the boundary of the disk with the orientation induced as
boundary of the disk. Then the Seifert fiber over x has Seifert invariants (α, β) = (q,−b) with
bp ≡ 1 mod q and 0 < −b < q. By Corollary 3.8 and discussion before in that same work, the
attaching matrix is

([s][f ]) = ([m][l])
(
a p
b q

)
(12.2)
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where [s], [f ] (section, fiber) is a positive basis of the boundary torus in the circle bundle of the
corresponding node; and [m], [l] (meridian, longitude) is a basis on the boundary torus of the solid
torus D2 × S1 that is attached. Each of the boundaries of the k disks is glued to a meridian of
this solid torus. By extending the fibration on the node to the attached solid torus, we get a
(p, q)-fibered torus which induces a rotation with rotation number p/q on each of the k boundary
components.

The decoration of the Euler numbers in the arm corresponding to that Seifert fiber is given by
the continued fraction of q/− b.

12.3. Now we describe the Euler weights of the arms of the plumbing graph that end at arrowheads
with multiplicity (1). These correspond to boundary components of Σ that are fixed by φΓ. Let
p/q be the fractional Dehn twist at a boundary component (note that possibly p > q). Let b be
as before, i.e. bp ≡ 1 mod q and 0 < −b < q. Then the Euler numbers of the vertices of the arm
correspond to the continued fraction expansion of −p/a with a = (pb − 1)/q. The reason is that
by the construction of an open book, we need to attach a solid torus D2×S1 to the mapping torus
of φΓ matching pt× S1 with the boundary of the surface. This corresponds to change the matrix
from eq. (3.2) to (

0 1
1 0

)(
a p
b q

)
=
(
b q
a p

)
(12.4)

Hence, by using Lemma 3.13, we find that the decoration of the Euler numbers in the arm corre-
sponding to that Seifert fiber is given by the continued fraction expansion of −p/a. The arm ends
with an arrow with multiplicity weight equal to (1).

12.5. Finally we describe the bamboos joining nodes in the plumbing graph. To each orbit of annuli
in the almost-canonical form defined by a mixed tête-à-tête graph there corresponds a bamboo in
the plumbing graph. Remark 9.13 gives us a simple formula for the screw number associated with
an orbit of annuli that corresponds to components Γ̃ij,1, . . . , Γ̃ij,αj of Γ̃i. We have that the screw
number is

∑
k −δij,k/l(Γ̃ij,1).

The maps φΓ,i|Γi
Γi+1

and φΓ,i+1|Γi+1
Γi+2

give us the rotation numbers of φαjΓ restricted to each
boundary component of the annuli Aij,1. These rotation numbers are p0/q0 and p1/q1. The screw
number can then be written as 1 − p0/q0 − p1/q1 + t with t ∈ Z. Then, the gluing matrix from
the Seifert piece corresponding to the node n0 to the Seifert piece corresponding to the node n1 is
the composition of three matrices. The first matrix corresponds to performing a twist of fractional
Dehn twist coefficient equal to p0/q0 − 1− t near the boundaries of n0; the second matrix

(−1 0
0 1
)

represents the gluing of boundary components from n0 to boundary components in n1 (the −1 on
the top left is because boundaries inherit opposite orientations); and the last matrix has the same
meaning as the first, but the remaining amount of twisting is p1/q1. Hence, the gluing matrix is:(

a1 p1
b1 q1

)−1(−1 0
0 1

)(
a0 p0 − (t+ 1)q0
b0 q0

)
=

=
(
q1a0 + p1b0 q1(p0 − (t+ 1)q0) + p1b0

∗ ∗

) (12.6)

Where b1p1 ≡ 1 mod q1 and 0 < −b1 < q1; and b0(p0 − (t+ 1)q0) ≡ 1 mod q0 and 0 < −b0 < q0.
And numbers a0 and a1 are defined by the property that the matrices have determinant −1. If
qi = 1, then we take bi = 0 and hence ai = −1, for i = 0, 1.
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Hence, again using Lemma 3.13 we find that the Euler number weights corresponding to the
bamboo are given by the continued fraction expansion of

−q1(p0 − (t+ 1)q0) + p1b0
q1a0 + p1b0

.

In case the denominator is 0, this correspond to an empty bamboo or just and edge joining the
two nodes.

Summarizing we already have a plumbing graph Λ of which we know:

(1) The genus number for all vertices.

(2) The Euler number of all the vertices in the bamboos.

(3) The multiplicities at the nodes and the arrowheads.

Since we know the Euler numbers of the bamboos, the multiplicities everywhere and that the
multiplicities at the nodes are non-zero, we can recover the Euler number weights of the nodes
using Equation (4.18). Which completes all the information about the plumbing graph.

Note that this a plumbing graph with arrows, so there is an associated closed graph manifold
coming from forgetting the arrows. This is Y and the arrows correspond to the Waldhausen link
L.

The multiplicities at the nodes together with the Euler number weights, determine a system of
multiplicities on the whole graph. However, this information does not, in general, fully determine
a horizontal fibration.

We also know the number of connected components of each periodic part. The only piece of
information missing to recover the horizontal open book up to diffeomorphism, is the invariant
defined Section 4.3 ii). That is, we need to give an element on H∨G(Y,L). Let c be a cycle in
HG(Y,L), pick a path pc in Γ which is a lift of c. There exists a number kc such that the image by
φkcΓ of end point of pc is in the same connected component as the starting point of pc. This is the
missing invariant.
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Appendix A

Mixed tête-à-tête structures on
filtered metric ribbon graphs

Given a filtered metric ribbon graph Γ• (with some regularity condition) we give a complete
description in Proposition A.22 of all the possible δ• functions that make it a mixed tête-à-tête
graph (Γ•, δ•). For that, we will define a computable number, the τ number, that codifies the
obstruction to extend a homeomorphism on Σi+1

Γ to ΣΓi+2 to the next level of the filtration. The
appendix ends with an example of a filtered metric ribbon graph of depth 1 in which we apply this
result.

We start studying all the possible `-tête-à-tête structures for a ribbon graph. From now on,
we only consider metric ribbon graphs where the length of each edge is in πQ+ where Q+ denotes
the positive rational numbers. This does not restrict us in the set of elements in MCG+(Σ, ∂Σ)
that we can model since by the proof of Theorem 7.18 and by the proof of Theorem 10.7, we can
always get that the lengths of the edges of the constructed graphs lie in πQ+.

We fix a natural notion of isomorphism between two metric ribbon graphs.

Definition A.1. Let Γ and Γ′ be two metric ribbon graphs. We say that Γ and Γ′ are isomorphic
as metric ribbon graphs if there exists a map f : Γ→ Γ′ such that

i) f is an isometry.

ii) f preserves the cyclic order at each vertex.

Similarly, given two relative metric ribbon graphs (Γ, A) and (Γ′, A′) we say that they are
isomorphic as relative metric ribbon graphs if there exists a map f : Γ → Γ′ such that i) and ii)
hold plus

iii) f(A) = A′.

Clearly not every metric ribbon graph is a pure π-tête-à-tête graph.

Definition A.2. Let Γ be a metric ribbon graph. We define πΓ as the smallest number in πQ+
such that Γ satisfies the πΓ-tête-à-tête property.
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Lemma A.3. The number πΓ is well defined for every metric ribbon graph Γ.

Proof. We prove that the set

R := {r ∈ πQ+ : Γ is a tête-à-tête graph for safe walks of length r}

is nonempty and discrete.
Let Γ̃ = {Γ̃1, . . . , Γ̃s} be the set of boundary components in ΣΓ that come from cutting Σ (the

thickening of Γ) along Γ. And let l(Γ̃i) be the length of Γ̃i for i = 1, . . . , s. Since l(Γ̃i) ∈ πQ+, we
find that l(Γ̃i)/π = pi/qi. The number

r := lcm(p1, . . . , ps) · π

is clearly in R and the homeomorphism that it induces is the identity on the graph. So the set is
nonempty.

The set is discrete: take m(Γ) = mine∈e(Γ) l(e). Clearly, if r ∈ R, no number x with |x− r| <
m(Γ)/2 can be in R.

Note that R is bounded below by 0, so its minimum exists and, by definition, coincides with
πΓ.

Let Γ be tête-à-tête graph for safe walks of length r and Σ its thickening. Let Γ̃ = {Γ̃1, . . . , Γ̃b}
be the collection of boundary components of ΣΓ that come from cutting along Γ. Recall Nota-
tion 1.11. Denote by φΓ the tête-à-tête map that fixes the boundary pointwise (for some choice of
retraction lines) and by φ̃Γ the homeomorphism induced on ΣΓ.

Remark A.4 (Remark on orientation conventions.). In these two appendices we always orient the
connected components of Γ̃ with the opposite orientation to the one that they inherit as boundary
of ΣΓ. That is, whenever we are computing a rotation number, we put the orientation given by
the direction that a relative safe walk would take on this component.

Let t ∈ Q+. Denote by tΓ the metric ribbon graph resulting from multiplying the lengths of
every edge in Γ by t.

In the next lemma we list some easy properties derived from the definitions in this section.

Lemma A.5. Suppose that Γ is a r-tête-à-tête graph. The following properties hold:

(1) r/l(Γ̃i) = rot(φ̃Γ|Γ̃i) +m with m ∈ N ∪ {0}.

(2) If Γ is also a tête-à-tête graph for safe walks of length R, then it is a tête-à-tête graph for
safe walks of length |mR+ nr| for any m,n ∈ Z.

(3) There exists a natural number m ∈ N such that r = mπΓ.

(4) t · πΓ = πtΓ

(5) π
πΓ
· Γ is a pure π-tête-à-tête graph.

(6) Suppose now that Σ has only one boundary component. Let f : Γ → Γ be any isomorphism
of Γ and f̃ : Γ̃→ Γ̃ the induced map. Then there exists m ∈ N such that

rot(f̃ |Γ̃) · l(Γ̃) = mπΓ
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Proof. (1), (2) and (4) are direct consequences from their respective definitions. (5) is a direct
application of (4).

For (3) we use (2): If r = πΓ, then m = 1 and we have finished. Suppose that r > πΓ.
Then Γ satisfies the tête-à-tête property for safe walks of length r1 := r − πΓ. In general, define
rk := rk−1 − πΓ. At each step we have that rj < rj−1. By definition it can never happen that
0 < rj < πΓ so there exists m such that rm = 0. Then r = mπΓ.

Now we prove (6). Suppose that rot(f̃ |Γ̃) = p/q. Then Γ is a tête-à-tête graph for safe walks
of length p

q · l(Γ̃). Conclude by (3).

And as a consequence:

Corollary A.6. Every ribbon graph admits a metric that makes it a π-tête-à-tête graph.

Observe that the metric given by the Corollary above might give a mapping class that is the
identity in MCG+(Σ), however it is never the identity in MCG+(Σ, ∂Σ).

A.1 The τ number.

Remark A.7. Let a, b ∈ R with b > 0. We denote by a mod b the only number in [0, b) which
is congruent with a modulo integer multiples of b. For example, with Definition 2.15 of rotation
number we have

rot(f ◦ g) mod 1 = (rot(f) + rot(g)) mod 1
and

(−rot(f)) mod 1 = (rot(f−1)) mod 1.

Definition A.8. Let Γ be a metric ribbon graph and let Σ be its thickening. Suppose that Σ has
only 1 boundary component. Let Γ̃ be the boundary component in ΣΓ̃ that comes from cutting along
Γ. Let f̃ : Γ̃→ Γ̃ be an orientation preserving periodic isometry. We define the number

τ(f̃ ,Γ) :=
(
−rot(f̃) · l(Γ̃)

)
mod πΓ

and we call it the tau number of f̃ with respect to Γ.

Note that if f̃ and g̃ are both orientation preserving periodic isometries of Γ̃ ≈ S1, by Re-
mark A.7 we have that

τ(g̃ ◦ f̃ ,Γ)− τ(f̃ ,Γ)− τ(g̃,Γ) ∈ πΓ · Z (A.9)

Lemma A.10. Let Γ be a metric ribbon graph and let Σ be its thickening. Suppose that Σ has
only 1 boundary component. Let Γ̃ be the boundary component in ΣΓ that comes from cutting along
Γ. Let f̃ : Γ̃ → Γ̃ be an orientation preserving periodic isometry. Then f̃ is compatible with the
gluing gΓ if and only if

τ(f̃ ,Γ) = 0.
Moreover, the homeomorphism

f̃ ′ := Dτ(f̃ ,Γ)(Γ̃) ◦ f̃ : (Σ)Γ → (Σ)Γ

is compatible with the gluing gΓ.
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Proof. If τ(f̃ ,Γ) = 0, then −rot(f̃) · l(Γ̃) = mπΓ for some m ∈ Z. Since rot(f̃) > 0 we find that
m < 0. By definition of πΓ, we have that Γ is a tête-à-tête graph for safe walks of length −mπΓ
and we conclude that f is compatible with the gluing gΓ.

Suppose now that f̃ is compatible with the gluing. This means that it it induces an isomorphism
f of Γ. So by (Lemma A.5 (6)) we have that −rot(f̃) · l(Γ̃) = mπΓ for some m ∈ Z and hence
τ(f̃ ,Γ) = 0.

For the second part, just observe that by (eq. (A.9)) we find that τ(f̃ ′,Γ) = 0.

As a consequence, we find that if f̃ and g̃ are both orientation preserving periodic isometries
of Γ̃, and g̃ is compatible with the gluing, then

τ(g̃ ◦ f̃ , Γ̃) = τ(f̃ , Γ̃) and τ(f̃ ◦ g̃, Γ̃) = τ(f̃ , Γ̃). (A.11)

Then, the following definition makes sense:

Definition A.12. Let Γ1 and Γ2 be two isomorphic metric ribbon graphs whose thickenings have
1 boundary component. Let φ̃ : Γ̃1 → Γ̃2 be an orientation preserving isometry such that there
exists at least one isomorphism g : Γ2 → Γ1 with g̃ ◦ φ̃ periodic. Then we define

τ(φ̃,Γ2) := τ(g̃ ◦ φ̃,Γ1)

To check it is well defined, one has only to see that given g and g′ as in the definition, we find
that g̃′ ◦ g̃−1 is a periodic isometry and apply (eq. (A.11)) to check

τ(g̃ ◦ φ̃,Γ1) = τ((g̃′ ◦ g̃−1) ◦ g̃ ◦ φ̃,Γ1) = τ(g̃′ ◦ φ̃,Γ1).

The following corollary shows the setting in which we use the previously defined τ number. It
is the key part in the proof of Proposition A.22.

Corollary A.13. Let Γ1 and Γ2 be two isomorphic metric ribbon graphs whose thickenings have
1 boundary components. Let φ̃ : (Σ1)Γ1 → (Σ2)Γ2 be an orientation preserving homeomorphism
that restricts as an isometry φ̃|Γ̃1

: Γ̃1 → Γ̃2 and such that there exists at least one isomorphism
g : Γ2 → Γ1 with g̃ ◦ φ̃|Γ̃1 periodic. Then φ̃ is compatible with the gluings gΓ1 and gΓ2 if and only if

τ(φ̃|Γ̃1
,Γ2) = 0. (A.14)

Moreover, the homeomorphism

φ̃′ := D
τ(φ̃|

Γ̃1
,Γ2)(Γ̃1) ◦ φ̃ : (Σ1)Γ1 → (Σ2)Γ2

is compatible with the gluings gΓ1 and gΓ2 .

Proof. If φ̃|Γ1 is compatible, then g̃ ◦ φ̃|Γ1 is compatible for any isomorphism g : Γ2 → Γ1. Then
by Lemma A.10, we have (eq. (A.14)).

Suppose now that (eq. (A.14)) holds, then there exists some isomorphism g : Γ2 → Γ1 with
g̃ ◦ φ̃|Γ̃1 periodic such that g̃ ◦ φ̃|Γ1 is compatible with the gluing gΓ1 . Let φg : Γ1 → Γ1 be the
induced mapping. Then it is clear that the lifting of g−1 ◦ φg coincides with φ̃|Γ1 . Then, φ̃|Γ1

induces a mapping from Γ1 to Γ2 and is compatible with both gΓ1 and gΓ2 as desired.
For the last statement, it is clear that τ(φ̃′, Γ̃) = 0 and then φ′ is compatible.
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Σ1Σ2

Figure A.16: We see two copies of Σ with an embedded metric ribbon graph. In one copy the only vertex
is in red and in the other in blue.

We illustrate the use of these definitions and properties in the following example.

Example A.15. Let Σ be the one-holed torus which is the thickening of the depicted embedded
graph in Figure A.16.

We set that the length of each edge is π. With this metric, the graph satisfies the pure
π-tête-à-tête property and the induced homeomorphism has order 4 when restricted to the graph.

In the Figure A.17 is depicted the action of a homeomorphism φ̃ : (Σ)Γ → (Σ)Γ which restricts
as an isometry φ̃|Γ̃ : Γ̃→ Γ̃.

We pick any isomorphism f : Γ→ Γ. For example, in the picture the induced map f̃ : Γ̃→ Γ̃
sends v̂i to vi and is an isometry. The map f̃ ◦ φ̃ is a rotation with rotation number equal to 7/12.

(Σ1)Γ1(Σ2)Γ2

φ̄

2π/3

ππ

v1

v2

v3

v4

v̂1

v̂2

v̂3

v̂4

φ̄(v1)

φ̄(v2)
φ̄(v3)

φ̄(v4)

Figure A.17: In blue we see the four preimages (by the gluing gΓ) of the only vertex in Γ. On the left
side of the figure we see in red the preimages of the vertex in Γ and in blue the images by φ̃ of the points
in Γ̃ .

Now we compute the corresponding tau number.

τ(φ̃|Γ̃,Γ) =
(
− 7

12 · 4π mod π

)
= 2

3π

We observe also in the picture that D2π/3 ◦ φ̃ is compatible with the gluings.
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Remark A.18 (Relative tête-à-tête versions). Observe that for relative metric ribbon graphs
there exists a version for each of the results and definitions in this section. Just substitute metric
ribbon graph Γ for relative metric ribbon graph (Γ, A) in each statement.

We define the number defined in Definition A.2 for a relative metric ribbon graph (Γ, A) in the
same way and we will denote it by πΓ. It will always be clear from the context that Γ is a relative
tête-à-tête graph without specifying the relative part.

For the statements in Lemma A.5 (6), Definition A.8 change the condition that imposes that Σ
has only one boundary component and instead impose that Σ has only one boundary component
apart from the boundary components in A.

A.2 Mixed tête-à-tête structures on filtered metric
ribbon graphs

Let Γ• be a filtration of depth d on a metric ribbon graph. We analyze which functions δ• make
it a mixed tête-à-tête graph.

We address this question in the case of a particular class of filtered metric ribbon graphs that
satisfy a certain “regularity” condition.

Definition A.19. We say that a filtered metric ribbon graph Γ• of depth d is regular if for every
i = 0, . . . , d, the graph Γi has the same number of connected components as Γ̃i. We will say that
(Γ•, δ•) is a regular mixed tête-à-tête graph if it is a regular filtered metric ribbon graph that satisfies
the mixed tête-à-tête property.

Remark A.20. We observe that a filtered metric ribbon graph Γ• of depth d is regular if and
only if for every i = 0, . . . , d it happens that when we cut Σ along a connected component of Γi
only one boundary component appears.

For example, the graph constructed in Example C.11 is regular. Also all the mixed tête-à-tête
graphs corresponding with monodromies of irreducible plane branches in Chapter B.

For each Γi we enumerate its connected components Γi1, . . . ,Γidi . We denote by (Γij)Γi+1 the
result of cutting Γij along Γi+1∩Γij . By regularity of the graph it makes sense the following notation
for the connected components of ΓiΓi+1

{(Γi1)Γi+1 , . . . , (Γidi)Γi+1},

and if we denote by Γ̃ij the boundary component in ΓΓi that comes from cutting along Γij we can
write as well

{Γ̃i1, . . . , Γ̃idi}.

for the connected components of Γ̃i

Definition A.21. We say that a permutation of C(Γ̃i) given by a permutation λ on the indices
{1, . . . , di} is admissible if(

(Γij)Γi+1 , Γ̃i+1 ∩ (Γij)Γi+1

)
'
(

(Γiλ(j))Γi+1 , Γ̃i+1 ∩ (Γiλ(j))Γi+1

)
for every j = 1, . . . , di. Where ' denotes isomorphism as relative metric ribbon graphs.
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Let Γ• be a filtration of depth d on a metric ribbon graph. Let δ̂• be a set of functions such
that (Γ•Γi , (Γ̃

i)•, δ̂•) is a relative mixed tête-à-tête graph with relative mixed tête-à-tête map φΓΓi
.

And let λi be the permutation induced on {1, . . . , di} by φΓΓi
|Γ̃i .

Proposition A.22. We can extend the collection δ̂• to a collection of functions δ• such that

(Γ•Γi+1 , (Γ̃i+1)•, δ•)

is a relative mixed tête-à-tête graph if and only if λi is admissible.
Moreover, if λi is admissible then all the possible values of δi for each connected component of

Γi are

δi|(Γi
j
)Γi+1 = τ

(
φΓΓi
|Γ̃i
λ
−1
i

(j)

, (Γij)Γi+1

)
+ nπ(Γi

j
)Γi+1 (A.23)

where π(Γi
j
)Γi+1 is the number in Definition A.2 (see also Remark A.18) of the relative metric

ribbon graph ((Γij)Γi+1 , Γ̃i+1 ∩ (Γij)Γi+1) and n ∈ N.

Proof. Suppose that we can extend the collection δ̂• to a collection δ• so that

(Γ•Γi+1 , (Γ̃i+1)•, δ•)

is a relative mixed tête-à-tête graph. This means that Dδi ◦ φΓΓi
is compatible with gi, so in

particular λi was admissible.
Suppose now that λi is admissible. In particular it means that φΓΓi

restricts as an isometry
between Γ̃ij and Γ̃iλi(j) whose gluings by gi are isomorphic relative metric ribbon graphs.

The first term of the right hand side of eq. (A.23)

τ

(
φΓΓi
|Γ̃i
λ
−1
i

(j)

, (Γij)Γi+1

)

is the length of a boundary Dehn twist that makes the map

Dτ(φΓΓi
|
Γ̃i
λ
−1
i

(j)

,Γi
Γi+1 ) ◦ φΓΓi

compatible with the gluing gi (this follows from Corollary A.13).
The second term nπ(Γi

j
)Γi+1 of the right hand side of equation eq. (A.23) tells us all the possible

lengths of safe walks that make ((Γij)Γi+1 , Γ̃i+1 ∩ (Γij)Γi+1) a relative tête-à-tête graph (this follows
from Lemma A.5 (6) and from the Definition A.2).

So we can conclude that equation eq. (A.23) describes all possible values of δi|(Γi
j
)Γi+1 such

that the map Dδi|(Γi
j
)Γi+1

◦ φi−1 is compatible with the gluings.

We use the previous lemma to analyze the situation in Example C.51.
The following lemma tells us how to redistribute the δ numbers on a regular mixed tête-à-tête

graph.

Lemma A.24. Let (Γ•, δ•) be a regular mixed tête-à-tête graph which is a spine of a surface Σ.
And let φΓ : Σ → Σ be a representative of the mixed tête-à-tête homeomorphism induced. Let
Γ̃ij,1, . . . , Γ̃ij,αj be a collection of connected components of Γ̃i cyclically exchanged by φΓ,i−1 and so,
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also by φ̃Γ,i = Dδi ◦ φΓ,i−1. Let δij,k := δi(gi(Γ̃ij,k)). And let δ′ij,1, . . . , δ′ij,1 be positive real numbers
such that

∑
k δ

i
j,k =

∑
k δ
′i
j,k. Then there exists a mixed tête-à-tête graph (Γ′•, δ′•) of the same depth

as Γ embedded in Σ such that:

i) The graph ΓΓi is isometric to Γ′Γ′i .

ii) The graph Γi is isometric to Γ′i.

iii) The functions δ′• all coincide with the functions δ• except that δ′|Γ′i
j,k

= δ′ij,k for all k =
1, . . . , αj .

iv) [φΓ]∂1Σ = [φΓ′ ]∂1Σ.

Observe that i) and ii) in particular give an bijection of the connected components of each level of
the filtration so iii) makes sense.

Proof. By definition
Dδi = Dδi

j,αj

◦ · · · ◦ Dδi
j,1

where each boundary Dehn twist is around the corresponding boundary component.
Define r1 := δ′ij,1 − δij,1 ∈ R. Now we define

D′δi = Dδi
j,αj

◦ · · · ◦ Dδi
j,2−r1

◦ Dδ′i
j,1

that is, we take the same composition of boundary Dehn twists, modifying the first one and the
second. The homeomorphism D′δi is not necessarily compatible with the gluing

gi : ΣΓi → ΣΓi+1 .

But it is compatible with the gluing

g′i := gi ◦ Dr1(Γ̃ij,2) ◦ D−1
r1 (Γ̃ij,1)

So we have a filtered metric ribbon graph Γ′ := g` ◦ · · · ◦ gi+1 ◦ g′i(ΓΓi) embedded in Σ that satisfies
i) and ii) by construction. And if we take as δ′ functions for this new graph, the same functions as
before but changing δij,1 for δ′ij,1 and δij,2 for δij,2 − r1. Then (Γ′•, δ′•) is a mixed tête-à-tête graph
satisfying iv). Well, we might have a problem: that δij,2 − r1 < 0; recall that our definition of
mixed tête-à-tête graph only allows non-negative δ functions. But if we iterate this construction
e.g. now we modify the gluing and boundary Dehn twists on Γ̃ij,2 and Γ̃ij,3 and so on. After αj − 1
iterations we get a mixed tête-à-tête graph Γ that satisfies i)− iv).
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Λ-blow up

In this second appendix, we introduce the Λ-blow up operation, where Λ is a filtered metric
ribbon graph Λ•. The Λ-blow up of a tête-à-tête graph Γ gives a filtered metric ribbon graph
that is denoted by Blp(Γ,Λ, ε)• where p is a vertex of Γ and ε has to be properly chosen. In
Lemma B.16 we find numbers δ• such that, assuming Λ• has a mixed tête-à-tête structure, we find
that (Blp(Γ,Λ, ε)•,∆•) is a mixed tête-à-tête graph. In Section B.2 we use this to to find a mixed
tête-à-tête graph for the monodromy of a plane branch recursively from the Puiseux pairs. For
that we use the description of the monodromy of [A’C73].

Loosely speaking, assume φ : Σ→ Σ to be a periodic homeomorphism on a surface Σ of order
n and ψ : H → H a pseudo-periodic homeomorphism on a surface H with 1 boundary component,
we can pick an orbit of φ, cut disks around each point in the orbit and glue a copy of H to each of
the new boundary components. Let S be the resulting surface. We will construct a pseudo-periodic
homeomorphism ϕ on S. The homeomorphism ϕ will behave as φ on the part of the surface that
corresponds to Σ minus the disks, and ϕn will behave as ψ on each of the copies of H that we
glued. We will define this operation in terms of metric ribbon graphs.

Let Λ and Γ be two metric ribbon graphs and let H and Σ be their respective thickenings.
Suppose that Γ is a tête-à-tête graph for safe walks of length r and let φΓ : Γ→ Γ be the induced
tête-à-tête homeomorphism fixing the boundary pointwise as in Chapter 9. Suppose also that H
has only 1 boundary component.

Since H has only 1 boundary component, we find that HΛ is a cylinder that comes with a
gluing map gΛ : HΛ → H. Let Λ̃ be the boundary component of HΛ that comes from cutting
along Λ. This boundary component has naturally a marked set of points MΛ̃ := g−1

Λ (v(H)) which
are the preimage by gΛ of the vertices in H. We call this set of points the marking induced by Λ.
Let l(Λ̃) be the length of Λ̃.

Let p ∈ Γ be a vertex of valency v(p) and let m(p) := mine∈e(p) l(e) where l(e) denotes the
length of the edge e.

Suppose that the condition
l(Λ̃) < m(p)v(p) (B.1)

holds. When this is the situation, we can define the Λ−Blow up as follows.
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Let pφΓ := {p0, p1, . . . , pt} be the orbit of an arbitrary point p ∈ Γ by φΓ, with φjΓ(p) = pj and
the convention that φ0

Γ = id. In this setting we can perform a blow-up of any length

ε < m(p)/2 (B.2)

in the sense of A’Campo (see Definition 6.13) at the vertex p. We denote the resulting relative tête-
à-tête graph by (Blp(Γ, ε), C), where C := {C0, . . . , Ct} are the new boundary components coming
from the blow-up. We denote by φBlp(Γ,ε) the induced relative tête-à-tête map on (Blp(Γ, ε), C).

We fix
ε = l(Λ̃)/2v(p) (B.3)

which, by eq. (B.1), is strictly less than m(p)/2 so condition eq. (B.2) is satisfied. In this way for
each j = 0, . . . , t we find that

l(Cj) = 2εv(p) = l(Λ̃) (B.4)

Since l(C0) = l(Λ̃), we can pick an orientation preserving isometry

ψ : C0 → Λ̃

This gives us a way to close each Cj : we glue x, y ∈ Cj if

gΛ ◦ ψ ◦ φ−jBlp(Γ,ε)(x) = gΛ ◦ ψ ◦ φ−jBlp(Γ,ε)(y) (B.5)

with the convention that φ0
Blp(Γ,ε) = id.

After gluing all the boundary components Cj we get a new metric ribbon graph that we denote
by

Blp(Γ,Λ, ε)

We say that it is a Λ-Blow up of length ε at p ∈ Γ or just the Λ-blow up of Γ at p.
This construction defines as well a gluing map

ĝ : Blp(Γ, ε)→ Blp(Γ,Λ, ε) (B.6)

that sends two or more points to the same point if equality eq. (B.5) holds for them.
We denote by Mi the marking on the boundary component Ci, that is

Mi := φjBlp(Γ,ε) ◦ ψ
−1(MΛ̃) (B.7)

Since HΛ is a cylinder, we can extend ψ−1 to a homeomorphism ψ̂−1 from HΛ to a whole collar
neighborhood Ĥ0 of C0. Let Ĥi := φiBlp(Γ,ε)(Ĥ0). We denote by Hi the surface resulting from
closing the cylinder Ĥi according to eq. (B.5). We see that Hi is by construction homeomorphic to
H. Hence the thickening S of Blp(Γ,Λ, ε) is homeomorphic to removing a disc around each point
in the orbit pφΓ and glue a copy of H along the boundary circle .

Notation B.8. For further reference, we denote by ρi : H → Hi each of the homeomorphisms
fixed above. Also see Figure B.10.

Remark B.9. Observe that once we have the metric ribbon graphs Γ and Λ, and the point p ∈ Γ,
the number ε is completely determined (by eq. (B.3)), yet we explicit it in the notation of the
Λ-blow up.
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ψ̃−1

gΛ

C

C0

H

H0

Ĥ0

ρ0

ĤΛ

ĝ

Figure B.10: We see what happens at one point of a K2,3-Blow up on a graph Γ. In red the K2,3
tête-à-tête graph. In blue a part of Γ. On the lower-right part we can see the embedded cylinder that is
denoted by Ĥ0. The marking M0 on C0 tell us how to close this cylinder to get a surface homeomorphic
to H.

Remark B.11. If Λ is a filtered metric ribbon graph of depth `, the construction of the Λ-blow
up naturally induces a filtration on Blp(Γ,Λ, ε) of depth `+ 1. Where the level 0 of the filtration
is the whole graph and the level i of the filtration corresponds to the level i− 1 of the copies of Λ.

Notation B.12. We introduce the notation for the pieces of each level of the filtration Blp(Γ,Λ, ε)•
in the case Λ• is a regular filtered metric ribbon graph.

We identify Λ with ĝ(C0) (remember that Λ̃ was identified with C0 by the isometry ψ). Now
we give a name to the corresponding parts of the filtration by

(Blp(Γ,Λ, ε)i+1
j,k )0 := Λij,k ⊂ ĝ(C0) (B.13)

where for each i = 0, . . . , `, the index j runs along 1, . . . , βi, and for each j, the index k runs along
1, . . . , αj . The superindex i+ 1 indicates the level of the filtration, and the shift in 1 compared to
the right hand side of the expression corresponds to Remark B.11. The superindex 0 outside the
parenthesis indicates that the corresponding piece is in ĝ(C0).

The relative tête-à-tête map φBlp(Γ,ε) induced by the relative tête-à-tête property of (Blp(Γ, ε), C)
for safe walks of length r induces a labelling of the rest of the connected components of each level
Blp(Γ,Λ, ε)i for all i = 1, . . . , ` + 1 by taking the pieces that we have already named and setting
for each s = 1, . . . , t the name

(Blp(Γ,Λ, ε)ij,k)s := ĝ(φsBlp(Γ,ε)(ĝ−1((Blp(Γ,Λ, ε)ij,k)0))) (B.14)

Which is well defined by the construction of the Λ- blow up (see eq. (B.5)).
For each i = 0, . . . , `+ 1 we denote

113



Appendix B Λ-blow up

Blp(Γ,Λ, ε)i+1 :=
{

(Blp(Γ,Λ, ε)i+1
j,k )s : s = {0, . . . , t} and i, j, k are such that Λij,k ⊂ Λi

}
(B.15)

Observe that since Γ was connected, Blp(Γ,Λ, ε)0 consists of one connected component which
is the whole Blp(Γ,Λ, ε).

This notation gives a name to every connected component of every level of the filtration
Blp(Γ,Λ, ε)•.

Assuming (Λ•, δ•) is a regular mixed tête-à-tête graph, we describe in the next lemma how to
put a mixed tête-à-tête structure on Blp(Γ,Λ, ε)•. We use the results from Chapter A.

Lemma B.16. Let (Λ•, δ•) be a regular mixed tête-à-tête graph whose filtration has depth ` and
suppose that the thickening H of Λ has one boundary component. Let Γ be a connected tête-à-tête
graph for safe walks of length r and let p ∈ Γ be a point whose orbit has order t+ 1. Suppose that
the condition eq. (B.1) is satisfied. Then the there exists a collection of functions ∆•, defined in
equations eq. (B.18), eq. (B.19) and eq. (B.20) such that

(1) (Blp(Γ,Λ, ε)•,∆•) is a mixed tête-à-tête graph of depth `+ 1.

(2) We have the following equality of relative tête-à-tête homeomorphisms

φBlp(Γ,Λ,ε),0 = φBlp(Γ,ε)

where φBlp(Γ,Λ,ε),0 follows the notation of eq. (9.10) and we have identified the graph Blp(Γ,Λ, ε)Blp(Γ,Λ,ε)1

with Blp(Γ, ε) in the notation previous to this theorem.

(3) For every q ∈ Λ we find that
φt+1
Blp(Γ,Λ,ε)(q) = φΛ(q),

where φBlp(Γ,Λ,ε) : S → S and φΛ : H → H be the associated mixed tête-à-tête homeomor-
phisms of the thickening S and H of Blp(Γ,Λ, ε) and Λ respectively. Recall that we have an
identification ρ0 : H → H0 (Notation B.8) which gives an inclusion Λ ↪→ H0 ⊂ S.

Proof. For practical purposes, since the expressions involved in the proof of this lemma are rather
cumbersome, we will use the notation

Ω := Blp(Γ,Λ, ε)

to make them more legible. Also keep in mind Figure B.22. We denote by gΩ,i : ΩΩi → ΩΩi+1

and gΛ,i : ΛΛi → ΛΛi+1 the gluing functions of the two filtered metric ribbon graphs involved
in the lemma and ĝΩ,i = gΩ,`+1 ◦ · · · ◦ gΩ,i and equivalently for ĝΛ,i. For the rest, we are using
Notation B.12. In particular, remember that Λ is identified with ĝΩ(C0) .

We also recall the labelling on the connected components of Λi induced by the mixed tête-à-tête
structure (Λ•, δ•)

Λi1,1, . . . ,Λi1,α1
,Λi2,1, . . . ,Λi2,α2

, . . . ,Λiβi,1, . . . ,Λ
i
βi,αβi

(B.17)

related with the orbit structure of φ̃Λ,i−1. By the regularity of Λ we find that Λij,k := gΓi(Λ̃ij,k) is
a whole connected component.

On the first part of the proof we define a collection of functions ∆•. After that, we will prove
that these functions make (Ω•,∆•) a mixed tête-à-tête graph with property (2) of the statement.
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To recover the homeomorphism induced on ΩΩ1 by the relative tête-à-tête property of (Blp(Γ, ε), C)
for safe walks of length r, we set

∆0(Ω0) := r

which proves (3).
We define

∆i+1
∣∣
(Ωi+1
j,k

)0 := δi
∣∣
Λi
j,k

(B.18)

where for each i = 0, . . . , ` the index j runs along j = 1, . . . , βi and for each j the index k runs
along k = 1, . . . , αj ; except for the index (i, j, k) = (0, 1, 1).

We denote by (Ω̃ij,k)s the boundary component in ΩΩi that comes from cutting along (Ωij,k)s.
Consider the map

φt+1
Blp(Γ,ε)

∣∣
(Ω̃1

1,1)0 : (Ω̃1
1,1)0 → (Ω̃1

1,1)0

and let rot(φt+1
Blp(Γ,ε)

∣∣
(Ω̃1

1,1)0) be its rotation number Definition 2.15 where we are orienting (Ω̃1
1,1)0

with the opposite direction as the one it inherits as boundary component.
Then we set

∆1((Ω1
1,1)0) :=


δ0 − rot

(
φt+1
Blp(Γ,ε)

∣∣
(Ω̃1

1,1)0

)
· l((Ω̃1

1,1)0) if it is positive(
1− rot(φt+1

Blp(Γ,ε)
∣∣
(Ω̃1

1,1)0)
)
· l((Ω̃1

1,1)0) + δ0 otherwise.
(B.19)

Note that (Ω1
1,1)0 corresponds to the index (i, j, k) = (0, 1, 1) that we excluded before.

Finally, for all i, j, k and s = 1, . . . , t, we set the functions

∆i((Ωij,k)s) := 0 (B.20)

Now we have defined a value of ∆i for each connected component of Ωi for all i = 0, . . . , `+ 1.
To prove the statements (1) and (2) of the lemma we will prove inductively the following

statements for each i = 0, . . . , `+ 1.

a) (Ω•Ωi+1 , (Ω̃i+1)•,∆•) is a relative mixed tête-à-tête graph (whose relative mixed tête-à-tête
map we will denote by φΩΩi+1 ). Note that it is of depth les than i+ 1.

b)
D∆i+1 ◦ φt+1

ΩΩi+1
(p) = Dδi ◦ φΛ,i−1(p)

for every p ∈ Λ̃i ⊂ ΩΩi+1 .

Observe that the relative mixed tête-à-tête homeomorphism φΩΩn+1 coincides by construction
with φΩ,n in the notation of (9.10). We will use this last observation throughout the proof.

First we note that that (1) on the statement follows from a) for i = `+ 1 since the set Ω`+2 is
empty and then a) means that (Ω•,∆•) is a mixed tête-à-tête graph.

Statement (2) follows from statements b) for i = 1, . . . , ` + 1. They mean that the homeo-
morphism φt+1

ΩΩi+1
(p) is the map induced by the compatibility of D∆i

◦ φt+1
ΩΩi

with the gluing gΩ,i
and that φΛ,i−1 is the map induced by the compatibility of Dδi−1 ◦ φΛ,i−2. Also observe that
gΩ,i|(Ω̃i

j,k
)0 = gΛ,i−1|Λ̃i−1

j,k

.
In order to prove a)− b), we use the equivalence of Remark 9.9 and its notation.
Suppose i = 0.
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Then a) is automatic since (ΩΩ1 , Ω̃1) is a relative tête-à-tête graph for safe walks of length
∆0(Ω0) = r by construction.

Now we prove b).
On the right hand side of the expression we have

Dδ0 ◦ φΛ,−1 = Dδ0

which induces a rotation of length δ0 on (Ω̃1
1,1)0. On the left hand side of the equation we have

D∆1 ◦ φt+1
ΩΩ1

.

Observe that φt+1
ΩΩ1

∣∣
(Ω̃1

1,1)0 induces a rotation of length rot(φt+1
ΩΩ1

∣∣
(Ω̃1

1,1)0) · l((Ω̃1
1,1)0) and recall

eq. (B.19). Therefore, if
δ0 − rot(φt+1

ΩΩ1

∣∣
(Ω̃1

1,1)0) · l((Ω̃1
1,1)0)

is positive, then it satisfies the equality with the left hand side of the equation. If it is negative,
the length of the rotation of φt+1

ΩΩ1

∣∣
(Ω̃1

1,1)0 exceeds δ0. Since we want to use positive Dehn twists,

we compose first with the positive Dehn twist of length (1 − rot(φt+1
ΩΩ1

∣∣
(Ω̃1

1,1)0)) · l((Ω̃1
1,1)0) which

completes 1 whole loop along (Ω̃1
1,1)0. After that, we compose with the Dehn twist of length δ0

and we also get the equality with the left hand side of the equation in b).
Suppose that we know a) and b) for i = d. And let i = d+ 1.
First we prove a). By hypothesis of induction on a), it is enough to prove that D∆d+1 ◦ φΩ,d

is compatible with the gluing gΩ,d+1. On one hand, when s = 0, . . . , t− 1, by definition of Λ-blow
up, the values ∆d+1((Ωij,d)s) = 0 make the map compatible with gd+1. When s = t, by definition
of Λ-blow up, it is equivalent to prove the compatibility of D∆d+1 ◦ φ

t+1
Ω,d . But by hypothesis of

induction on b) we know that D∆d+1 ◦φ
t+1
Ω,d = Dδd ◦φΛ,d−1. And the right hand side of the equation

above is a map compatible with gΩ,d+1 = gΛ,d because (Λ•, δ•) is a mixed tête-à-tête graph.
Now we prove b). We have to prove

D∆d+2 ◦ φ
t+1
ΩΩd+2

(p) = Dδd+1 ◦ φΛ,d(p)

for every p ∈ Λ̃d+1 ⊂ ΩΩd+2 . Observe that φt+1
ΩΩd+2

is by definition the homeomorphism induced
by the compatibility of D∆d+1 ◦ φ

t+1
ΩΩd+1

with the gluing gΩ,d+1. And φΛ,d is the homeomorphism
induced by the compatibility of Dδd ◦ φΛ,d−1 with the gluing gΛ,d but by hypothesis of induction
we know that

D∆d+1 ◦ φ
t+1
ΩΩd+1

(p) = Dδd ◦ φΛ,d−1(p)

for all p ∈ Λ̃d, and hence φΛ,d = φt+1
ΩΩd+2

. To finish the proof we just have to observe that by
definition ∆d+1((Ωd+1

j,k )0) = δd(Λdj,k). So b) follows.

Remark B.21. We observe that (2) of the lemma above implies that φt+1
Blp(Γ,Λ,ε)|Λ is isotopic to

φΛ because their actions coincide on a spine of H.

116



Λ-blow up Appendix B

Λ0
1,1

Λ1
1,2 Λ1

1,1

Λ2
1,1

Λ2
1,3Λ2

1,2
Λ2
1,4

Ω0

(Ω1
1,1

)0

(Ω2
1,1

)0(Ω2
1,2

)0

(Ω3
1,1

)0(Ω3
1,3

)0(Ω3
1,2

)0(Ω3
1,4

)0

(Ω1
1,1

)1

(Ω2
1,1

)1(Ω2
1,2

)1

(Ω3
1,1

)1(Ω3
1,3

)1(Ω3
1,2

)1(Ω3
1,4

)1

(Ω1
1,1

)2

(Ω2
1,1

)2(Ω2
1,2

)2

(Ω3
1,1

)2(Ω3
1,3

)2(Ω3
1,2

)2(Ω3
1,4

)2

Figure B.22: An example of Λ-blow up. In this case t+ 1 = 3, the depth of the filtration of Λ is 2 and
hennce, the depth of the filtration of Ω is 3. As exaplained in Lemma B.16, Λ is identified with the closing
of (Ω̃1

1,1)0, that is with H0 (in blue in the figure). Note that the labelling denotes the part of the graph
whose thickening comprehends from the connected piece where the label is to the top of the figure. Using
the notation of Lemma B.16, in this figure we have that α0 = 1, α1 = 2 and α2 = 3, also α̂0 = 1, α̂1 = 3,
α̂2 = 6 and α̂3 = 12; and βi = 1 for all i = 0, 1, 2, 3.

B.1 Brieskorn-Pham singularities

In this subsection, we outline a description given by A’Campo and discuss some properties of the
bipartite complete graphs that model Milnor fibers of Brieskorn-Pham singularities. That is, we
describe a model of the Milnor fiber of xp + yq. Consider two parallel vertical lines in R2, let L be
the line on the left and R the line on the right. We mark p different points in L and q different
points in R.

Consider the projection on the plane of the bipartite complete graph Kp,q resulting from taking
the joint of the set of p points in one line with the set of q points in the other. If we give the
cyclic orientation to the edges incident at each vertex induced by the orientation of the plane, the
corresponding thickening is homeomorphic to the Milnor Fiber of the singularity xp + yq.

If we set that the length of each edge is π/2, this graph satisfies the π-tête-à-tête property. Let
φ be the corresponding tête-à-tête homeomorphism.

Let x0 be one of the p vertices of valency q and let xi := φi(x0) for i = 1, . . . , p− 1; similarly
take one of the q vertices of valency p, denote it by y0 and denote yi := φi(y0).

Since φp(x0) = x0, there exists a small disk D0 around x0 invariant by φp. Take a point z0
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p0

p1

p2

p3

p4

p0

p4

rotφ
4

(∂D) = 1/3

D0

∂D0

x0

x1

x2

x3

y0

y1

y2

x0

Figure B.23: We see a K3,4 graph with each edge of length π/2. If φ is the tête-à-tête map, then the
disk D is an invariant disk by the map φ4. The rotation number of φ4

∣∣
∂D

is p̂/4 where, p̂ is the smallest
positive solution to p̂ ≡ 4 mod 3; in this case p̂ = 3.

near x0 lying on the edge that joins x0 with yi, then z1 = φ(z0) will lie near x1 on the edge that
joins x1 with yi+1, where i + 1 is taken mod q (see Figure B.23) and φp(z0) will lie in the line
that joins x0 with yi+p with i+ p taken mod q. So φp

∣∣
∂D0

has a rotation number of

p̂/q (B.24)

where p̂ is the smallest positive natural number such that p̂ ≡ p mod q. Equivalently for a small
disk around any yi.

When gcd(p, q) = 1, this surface has one boundary component, hence when we cut it along
Kp,q we get a cylinder. And the length of K̃p,q = 2pqπ/2 = pqπ. As noted in 7.9, a boundary
Dehn twist of length π is compatible with the corresponding gluing. This Dehn twist has a rotation
number on K̃p,q of

π

pqπ
= 1
pq

(B.25)

B.2 Mixed tête-à-tête graph for isolated plane curve
singularities

Let f : (C2, 0)→ (C, 0) be an isolated irreducible plane curve singularity and let

Ŝ := {(m0, n0), . . . , (ma, na)}

be its characteristic Puiseux pairs.
We start this Section building a mixed tête-à-tête graph (Γ(S)•,∆(S)•) using Lemma B.16

whose thickening is homeomorphic to the Milnor fiber of f = 0. In Proposition Proposition B.28
we prove that the induced homeomorphism is isotopic relative to the boundary to the monodromy
of the Milnor fiber. This construction is inspired by the construction depicted in [A’C73] as we see
in B.28.

Consider the associated sequence

S := {(λ0, n0), . . . , (λa, na)}
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computed by setting λ0 = m0 and

λi+1 = mi+1 −mnni+1 + λinini+1.

That is, the sequence of the Newton pairs of the singularity.

Remark B.26. It is known that the Puiseux pairs satisfy

1. gcd(mi, ni) = 1

2. mi > ni ·mi−1

and from there, it can be easily deduced that the Newton pairs satisfy

1. gcd(λi, ni) = 1

2. 1
λini

> ni+1
λi+1

We will use these properties.

Now we define inductively a+ 1 numbers. First, let la ∈ πQ+ be any positive rational multiple
of π. Suppose that we have already defined la−s+1. We define

la−s := 1
ka−s

λa−s+1la−s+1

λa−sna−s
(B.27)

where ka−s is any natural number greater than 2. We do this for s = 1, . . . , a.
Let Kλi,ni be the complete bipartite graph of type (λi, ni). We set a metric by declaring that

each edge of length li, then it satisfies the tête-à-tête property for safe walks of length 2li. We
denote the corresponding tête-à-tête map by φλi,ni .

We define Γ̂a := Kλ0,n0 . Now we consider the n1 vertices of valency λ1 in Kλ1,n1 which form
an orbit by φλ1,n1 and perform a Γ̂a-blow up of length ε0 = λ0n0l0

λ1
on that orbit. That is

Blv(Kλ1,n1 , Γ̂a, ε0)

that we denote by Γ̂a−1. According to the definition of Λ-blow up we need to check a couple
of things so that the above expression makes sense.

First we check that that
ε0 <

l1
2 .

Indeed,

ε0 = λ0n0l0
λ1

=
(
λ0n0

λ1

)(
λ1l1
k0λ0n0

)
= l1
k0

<
l1
2

so eq. (B.2) holds and it makes sense to consider a blow-up of length ε0 in the sense of A’Campo.
Secondly we have to check that eq. (B.4) holds. That is, that the length of ˜̂Γa coincides with

the length of each new boundary component in the graph Blv(Kλ1,n1 , ε0). The length of ˜̂Γa is just
2λ0n0l0. And the length of each boundary component of Blv(Kλ1,n1 , ε0) in the graph

2λ1ε0 = 2λ1
λ0n0l0
λ1

= 2λ0n0l0

so eq. (B.4) holds and it makes sense to consider the Γ̂a-blow up of length ε0.
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We denote by C1
1 , . . . , C

1
n1

the boundary components in Blv(Kλ1,n1 , ε0) coming from the blow
up. We observe that by eq. (B.24) and using that n1 < λ1

rot(φ̃n1
λ1,n1

∣∣
C1

1
) = n1

λ1

where φ̃λ1,n1 is the relative tête-à-tête map of Blv(Kλ1,n1 , ε0).
Using the notation introduced in Lemma B.16, we observe that in this first step Λ is a tête-à-

tête graph for safe walks of length 2l0 (which is a special case of a regular mixed tête-à-tête graph
with filtration of depth 0) and Γ is a tête-à-tête graph of length 2l1.

We apply the method used in that lemma to put a mixed tête-à-tête structure on Ω :=
Blv(Kλ1,n1 , Γ̂a, ε0). We set:

• ∆1
0 := 2l1

• ∆1
1((Ω1

1,1)0) := 2l0 − n1
λ1

2λ0n0l0 which corresponds to eq. (B.19). We also note that this
number equals

(
1

λ0n0
− n1

λ1

)
2λ0n0l0. This will be useful for Proposition B.28.

• ∆1
1((Ω1

1,k)t) := 0 for the rest of k, t.

The upper index 1 indicates that this is the first step of the induction. Now, for 1 ≤ s ≤ a we
proceed similarly as in the first case and define by recursion

Γ̂a−s := Blv(Kλs,ns , Γ̂a−s+1, εs−1)

where v is any of the ns vertices of valency λs and

εs−1 := λs−1ns−1ls−1

λs

By similar calculations as in the first step, we can check that eq. (B.2) is satisfied:

εs−1 = λs−1ns−1ls−1

λs
=
(
λs−1ns−1

λs

)(
λsls

ks−1λs−1ns−1

)
= ls
ks−1

<
ls
2

and also we check that the length of ˆ̃Γa−s+1, which is 2λs−1ns−1ls−1, coincides with the length of
each new boundary component that comes from the blow-up of length εs−1 at a vertex v of valency
λs in Kλs,ns which is

2λsεs−1 = 2λs
λs−1ns−1ls−1

λs
= 2λs−1ns−1ls−1

And again, we apply Lemma B.16 to get a mixed tête-à-tête structure and keeping in mind
that in this step Γ̂a−s plays the role of Λ and Kλs,ns plays the role of Γ.

We set:

• ∆s
0 := 2ls

• ∆s
1((Ω1

1,1)0) := 2ls−1 − (nsλs )2λs−1ns−1ls−1. Again we observe that this number equals(
1

λs−1ns−1
− ns

λs

)
2λs−1ns−1ls−1.

• ∆s
i ((Ωi1,1)0) := ∆s−1

i−1 ((Λi−1
j,1 ) = 2ls−2−(ns−1

λs−1
)2λs−2ns−2ls−2 which corresponds to eq. (B.18).

• ∆s
i ((Ωij,k)d) := 0 for the rest of indices.
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This construction iterated ` steps produces a graph Γ which is naturally filtered

Γ = Γ0 ⊃ · · · ⊃ Γa

with Γj being ms = na−j+1na−j+2 · · ·na copies of Γ̂j (for j > 0).
Given the sequence S := {(λ0, n0), . . . , (λa, na)} we denote by

(Γ(S)•,∆(S)•)

the regular mixed tête-à-tête structure defined by induction as we just did.
Proposition B.28. For a given sequence of Newton pairs S = {(λ0, n0), . . . , (λa, na)} associated
to the characteristic Puiseux pairs of an isolated singularity with Milnor fiber Σ. Then, the home-
omorphism induced by (Γ(S)•,∆(S)•) is a model of the monodromy h : Σ→ Σ of the singularity.
That is, the thickening Σ(Γ) of Γ is homeomorphic to the Milnor fiber F , and the mixed tête-à-tête
homeomorphism φΓ is isotopic relative to the boundary to the monodromy of the singularity.
Proof. By looking at the description of A’Campo [A’C73] (page 157-158) one can see that our
construction produces a homeomorphic surface and an isotopic homeomorphism.

We will reproduce the construction of A’Campo and show how each step of our constructions
corresponds to one step of his.

Let Gλi,ni be the Milnor fiber of the singularity xλi + yni and let fλi,ni be a representative of
the monodromy of the singularity which is the identity on a neighborhood of the boundary of the
Milnor fiber and periodic elsewhere.

In our construction, this Milnor fiber corresponds to the thickeing of the complete bipartite
graph Kλi,ni . The monodromy fλi,ni is isotopic (relative to the boundary) to the homeomorphism
that fixes boundary given by the tête-à-tête structure on Kλi,ni .

Where the monodromy is periodic, every point has an orbit consisting on λi ·ni points, except
for a set of λi points that are permuted and a set of ni points that are also permuted cyclically
by the monodromy. Now let G̃λi,ni be the surface resulting from removing a small disk around
each of this ni points in such a way that fλi,ni permutes these disks. We call the resulting surface
G̃λi,ni and the restricted homeomorphism f̃λi,ni .

In our construction this corresponds to the blowing up of the tête-à-tête graph at the ni vertices
which form an orbit. The homeomorphism f̃λi,ni corresponds to our induced relative tête-à-tête
homeomorphism on the new graph.

Let F (0) be a disk and let f (0) be the identity on the disk. Suppose we have already defined
the surface F (s−1) and the homeomorphism f (s−1) which is the identity in a collar neighborhood
of ∂F (s−1). Now let bi : S1 → ∂Gλs,ns , for i = 1, . . . , ns − 1, be an orientation preserving
homeomorphism identifying each of the boundary components of G̃λs,ns with S1. In such a way
that bi+1 = f̃λs,ns ◦ bi. Now let F (s)

far = F
(s−1)
1 t . . .tF (s−1)

ns , that is the disjoint union of ns copies
of F (s−1). Let ai : S1 → ∂F (s−1) = ∂F

(s−1)
i be an identification of the boundary of each copy

with MS1. Finally, let φ : ∂F (s)
far → ∂G̃λs,ns be an orientation reversing homeomorphism on the

boundary such that for each i we have φ ◦ ai = bi. Then we define F (s) := G̃λs,ns ∪φ F
(s)
far.

In our construction, this corresponds to the process of closing each boundary component of
the blow up. More concretely, the operation

Blv(Kλs,ns , Γ̂a−s+1, εs−1)

defines a filtered metric ribbon graph whose thickening is naturally homeomorphic to F (s) by the
construction of A’Campo.

The homeomorphism f (s) is defined by
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(a) f (s)
∣∣
G̃λs,ns

= f̃λs,ns

(b) f (s)
∣∣
F

(s−1)
i

sends F (s−1)
i to F (s−1)

i+1 by the identity for i = 1, . . . , ns − 1

(c) f (s)
∣∣
F

(s−1)
ns

= f (s−1)

In our construction this corresponds (respectively) to:

(a’) f̃λs,ns is just the homeomorphism induced by the relative tête-à-tête property onBlp(Kλs,ns , εs−1).

(b’) That f (s)
∣∣
F

(s−1)
i

sends F (s−1)
i to F (s−1)

i+1 by the identity for i = 1, . . . , ns − 1 corresponds in
our construction to the description of the graph of the Λ- blow up Blv(Kλs,ns , Γ̂a−s+1, εs−1)
and the fact that all the new ∆ numbers are 0 except for one component.

(c’) f (s)
∣∣
F

(s−1)
ns

= f (s−1) This corresponds in our construction to the adjustment made on the
component by setting the corresponding ∆ number to(

1
λs−1ns−1

− ns
λs

)
2λs−1ns−1ls−1.

We just observe that the number is the difference between the rotation number of the action
of f (s−1) on the (only) boundary of F (s−1) and the action of f̃ (s) on one of the boundaries
that appear after blowing up Kλs,ns so it induces a rotation of 1

λs−1ns−1
which after gluing,

recovers the monodromy of the Newton pair (λs−1, ns−1) (see also the second part of the
statement of Lemma B.16)

Example B.29 (Iomdin series). The singularity (x2 + y3)2 is non-isolated, its critical locus has
complex dimension 1. We consider the isolated singularities fk(x, y) = (x2 + y3)2 + x2k−1 with
k ∈ N. The associated characteristic Puiseux pairs are (3, 2)(6k− 12, 2)) we compute the sequence
of the associated pairs

Sk = {(3, 2)(6(k − 1), 2)}

Then, by the previous construction, delta function δ is defined by

δ1
∣∣
Γ̂1

1,1,1
= 0

and
δ1
∣∣
Γ̂1

1,2
=
(

1
6 −

2
6k − 12

)
· l(Γ̃1

1,2)

and so (Γ(Sk)•, δ(Sk)•) models the fiber and the monodromy of the singularity defined by fk(x, y) =
0.

We observe that the thickening of Γ1 consists of two copies F1, F2 of the Milnor fiber of the
singularity (x2 + y3) and that when k → ∞, the homeomorphism φΓ|Γ1 converges to that of
(x2 + y3)2, that is: a periodic homeomorphism that sends F1 to F2 by the identity and F2 to F1
by a periodic representative of the monodromy of x2 + y3 which rotates its only boundary with
rotation number 1/6 measured with the orientation on the boundary component induced by the
orientation of the Milnor fiber.
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Examples

Example C.1. Consider the complete bipartite graph K2,4 with the cyclic ordering at each vertex
given by the projection on the plane depicted on the left part of Figure C.2. The thickening Σ of
this graph is the surface of genus 1 and 2 boundary components.

Giving a length of π/2 to each edge, we provide the graph with a tête-à-tête structure such
that the corresponding periodic homeomorphism has order 4. We denote a periodic representative
of the induced mapping class by φK2,4 . We get that the red vertices have trivial isotropy group
while the blue vertices have isotropy group of order 2.

K2,4

ΣφK2,4

p

Figure C.2: On the left we see K2,3. On the right we see the orbit surface ΣφK2,4 .

The orbit surface ΣφK2,4 has genus 0 and 2 boundary components. It is depicted on the right
side of the figure together with the image by the projection map p : Σ→ ΣφK2,4 of the graph K2,4.

We perturb this graph as in the right side of Figure C.3. Observe that the vertex of valency 1
on this graph corresponds to a branch point of the map p.

Now we take the preimage by p of this graph. This is depicted on the left part of Figure C.3.
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p−1 Γ′φK2,4

Γ′
a

b

c

Figure C.3: On the left we see K2,3. On the right we see the orbit surface ΣφK2,4 .

We make the following observation. The length of all the edges in Γ′ is determined by the length
of the edges of Γ′φK2,4 . The fractional Dehn twist coefficient of φ at each of the two boundary
components is 1/4. I l(a), l(b) and l(c) denotes the length of the edges of Γ′φK2,4 , by the observation
made in this paragraph, we must have

l(a) + l(b) = l(a) + l(b) + 2l(c)

which is impossible since there can be no edges with length 0.

Example C.4. We show an example of construction of a general tête-à-tête graph from a periodic
automorphism of a surface permuting all its boundary components.

Let Σ be the surface of genus 1 and 3 boundary components C0, C1, C2 embedded in R3 as in
the picture C.5. Let φ : Σ → Σ be the restriction of the space rotation of order 3 that exchanges
the 3 boundary components. We observe that in particular φ3|Ci = id for i = 0, 1, 2.

We consider the star-shaped piece S with 3 arms together with the order 3 rotation r that
exchanges the arms (see the picture Figure C.5).

2π/3

Figure C.5: On the left, the torus Σ with 3 disks removed and the orbit of an arc marked, that is, 3
arcs in red. In the center, the star-shaped piece S with 3 arms to be glued to the torus along those arcs.
On the right, the surface we get after gluing, with 2 boundary components, one of them invariant by the
induced homeomorphism.

We glue S to Σ as the theorem indicates: we mark a small arc α0 ⊂ C2 and all its iterated
images by the rotation. Then we glue α0, α1, α2 to a0, a1, a2 respectively by orientation reversing
homeomorphisms. We get a new surface Σ̂ := Σ ∪ S with 2 boundary components. We cap the
boundary component that intersects C0 ∪C1 ∪C2 with a disk D2 and extend the homeomorphism
to the interior of the disk getting a new surface Σ̂ and a homeomorphism φ̂.

Using Hurwitz formula 2− 2g− 4 = 0− 2 we get that the surface we are gluing to Σ has genus
0 and hence it is a sphere with 4 boundary components. See picture Figure C.6. Three of them
are identified with C0, C1, C2, and the 4-th is called C and is the only boundary component of Σ̂.
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S
⋃
D2

B

B̃

Figure C.6: On the left, the torus with 3 disks removed and 3 the orbit of an arc marked. On the right,
the star-shaped piece with 3 arms to be glued to the torus along those arcs.

We compute the orbit space Σ̂φ̂ by the extended homeomorphism φ̂ and get a torus with 1
boundary component. We consider the graph Γ′ as in picture Figure C.7. We put a metric in this
graph. We set every edge of the hexagon to be π/6 − ε/3 long and the path joining the hexagon
with the branch point to be ε long. In this way, if we look at the result of cutting Σ̂φ̂ along the
graph φ̂ we see that the only boundary component that maps to the graph by the gluing map has
length 6(π/6− ε/3) + 2ε = π.

Bφ

(S
⋃
D2)φ̃

B̃φ̃

a1

a2

a3

a−1
1

a−1
2

a−1
3

Figure C.7: On the lower part we have the original surface. On the upper part we have the surface that
we attach, in this case a sphere with 4 holes removed.

The preimage Γ̂ of Γ′ by the quotient map is a tête-à-tête graph whose thickening is ˆ̂Σ. Its
associated homeomorphism φ̂ leaves Σ invariant and its restriction to it coincides with the rotation
φ. Moreover (Γ̂ ∩ Σ, Γ̂ ∩ ∂Σ) is a general spine of (Σ, ∂Σ). Modifying the induced metric in Γ̂ ∩ Σ
as in the proof of the Theorem and adding the order 3 cyclic permutation to the valency 1 vertices
we obtain a tête-à-tête graph whose associated homeomorphism equals φ.
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1

2
3

ε

π/6− ε/3

Figure C.8: On the left, the torus with 3 disks removed and 3 the orbit of an arc marked. On the right,
the star-shaped piece with 3 arms to be glued to the torus along those arcs.

Example C.9. This is an example of a mixed tête-à-tête graph. It is given purely in graph terms,
meaning that no embedding of the graph in a surface is constructed.

The graph is that of Figure C.10. The blue part is Γ \ Γ1 and the red part is Γ1.
The lengths and cyclic orders at each vertex are indicated and one can check that the functions

δ0 = π, δ1 = π/18

make (Γ•, δ•) a mixed tête-à-tête graph. One also can check that its thickening is the oriented
surface of genus 2 and 1 boundary component.

1
2

3
4

3
2

1

4

1
2

3

1

23

1
2

4
3 1

2
3

4

π/3

π/3

π/18 π/18

π/36

π/36

π/72

π/72

π/72

π/72

π/9

Figure C.10: Mixed tête-à-tête graph with Γ1 in red.

Example C.11. Let Σ be the surface of Figure C.13. Suppose it is embedded in R3 with its
boundary component being the unit circle in the xy-plane. Consider the rotation of π radians
around the z-axis and denote it by Rπ. By the symmetric embedding of the surface, it leaves the
surface invariant. Isotope the rotation so that it is the identity on z ≤ 0. More concretely, let
T : R3 → R3 defined by

T (r, θ, z) :=

 (rei(θ+π), z) if z ≤ ε
(reθ+ z

ε π, z) if 0 ≤ z ≤ ε
id if z ≤ 0

(C.12)

With (r, θ) polar coordinates on the xy-plane and ε > 0 small.
Let Di be a full positive Dehn twist on A1

1,k, k = 1, 2. We define the homeomorphism

φ := D2 ◦D−2
1 ◦ T |Σ.
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We apply Theorem 10.7 to construct a mixed tête-à-tête graph embedded in Σ modeling φ.

It is clear that φ is a pseudo-periodic homeomorphism and it is already in canonical form
(recall Theorem 2.32). Also we observe that [φ|Σ\A] has order 2.

Clearly, G(φ,Σ) is the graph depicted in Figure C.13 and is a tree. Also, since Σ has only 1
boundary component, there is only one possible root of G(φ,Σ). So we root the graph and label
the corresponding parts as in the cited figure.

Σ0
1,1

Σ1
1,1Σ1

1,2

A1
1,2

A1
1,1

C′′1
1,2 C′′1

1,1

C′1
1,2

C′1
1,1

∂0Σ

v01,1

v11,2 v11,1

x

y

z

Figure C.13: The surface Σ. The axis are also depicted in the figure. The rotation around the z-axis
is isotoped near the boundary of the surface so that it leaves the boundary fixed. On the right, the
corresponding G(φ,Σ) rooted at the only vertex at which is possible to root it.

On Figure C.14 we see the relative tête-à-tête graph (Γ0, B0) (in blue). This corresponds to
the first iteration of the induction process. In the figure it is indicated the lengths of the edges.
The lengths that are not indicated can be deduced knowing that the metric is invariant by φ.

Clearly, we only need to iterate once more to construct the final mixed tête-à-tête graph.
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π/18

π/3

π/3

π/18 π/18

π/9

Figure C.14: In blue, we see the relative tête-à-tête graph (Γ0, B0) for φ|Σ0 . The graph is embedded in
Σ.

On Figure C.15 we see a choice of parametrization η1
1,1 of A1

1,1 on the right and we also see in
green η1

1,1(I ×{p}) and η1
1,1(I ×{q}). On the left we see two copies of A1

1,2: on the upper copy we
can see the image by φ of the two retraction lines in A1

1,1; on the lower copy we can see the two
retraction lines given by η1

1,2. The latter ones are the ones that are going to be part of the final
mixed tête-à-tête graph.

On Figure C.17 we see the following:

• On the upper part, we see Σ1 and the graphs Γ1
1,1 and Γ1

1,2 = φ(Γ1
1,1) (in red).

• On the lower part we can see ΣΓ1 . Also 4 (in green) retraction lines have been added
concatenating with the previous 4 added segments.
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φ

A1
1,2

A1
1,1

A1
1,2

η11,2([0, 1]× {φ(p)})

η11,1([0, 1]× {p})p

φ(p)

φ(p)

q

φ(q)

φ(q)

Figure C.15: Choosing the retraction lines in Step 1.

p

φ(p)

φ(q)

q

Figure C.16: The retraction lines chosen embedded in the surface Σ.
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φ2|Σ1
1,1

Γ1
1,1

Γ̃1
1,1Γ̃1

1,2

Γ1
1,2 := φ(Γ1

1,1)

φ

π/36

Figure C.17: On the upper part of the figure we see Γ1
1,1 and Γ1

1,2 in red. The surface on the lower part
of the figure is ΓΓ1 . We see in blue the relative tête-à-tête graph of the first iteration of the induction
process minus its relative boundary components. We see in green the retraction lines added on STEP 1.
In orange we see the retraction lines contained in Σ1

Γ1 that we add on STEP 2. In red we see Γ̃1.

By the lengths chosen on Γ1
1,1 which are π/36 for each of the two edges, we find that l(Γ̃1

1,1) =
4 · π/36 = π/9 which coincides with l(C′′11,1) = 2 · π/18 = π/9.

By the construction on Theorem 10.7, we set the length of each of the orange and green lines
to be ε/2 and we also redefine the length of the blue edges where the green lines are attached to
be π/9− ε.

On Figure C.18 we see the whole graph.
Now we compute the δ numbers. In our case we find that the only screw number is −1. Since

α1 = 2, we find that δ1 is the constant function l(Γ̃1
1,1)/2. Also, we have by definition that δ0 = π.

This completes the construction.
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A1
1,2 A1

1,1

x
y

z

Figure C.18: The whole graph Γ ⊃ Γ1 whose associated mixed tête-à-tête homeomorphisms models T .
The red part corresponds to Γ1.
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Example C.19. We describe an example of a mixed tête-à-tête graph with a filtration of depth
2:

Γ ⊃ Γ1 ⊃ Γ2.

The thickening of Γ is a surface of genus 7, see Figure C.26 and 1 boundary component.
We start by describing first ΓΓ1 . Consider the complete bipartite graph of type 2, 3 that we

denote by K2,3. By putting the length of each edge to be π/2, we make it into a tête-à-tête graph.
Now perform a blow up of length ε1 < π/2 (in the sense of A’Campo) on the orbit formed by the
vertices of valency 2. See Figure C.20. Summarizing, we define ΓΓ1 := Blv(K2,3, ε).

π/2− ǫ

2ǫ1

Figure C.20: The figure corresponds to ΓΓ1 . It equals to Blv(K2,3, ε1) where v is any of the three vertices
of valency 2 and ε1 < π/2. It is a relative tête-à-tête graph whose tête-à-tête homeomorphism has order 6.
The three boundary components that come from the blowing-up correspond to Γ̃1 (when Γ1 is defined).
The four green arcs in each of these boundary components correspond to the part in Γ̃1 that is sent to Γ̃2

by gΓ,1 when these are defined (see the following figures).

Let’s describe Γ1
Γ2 . It consists of three copies of the same relative metric ribbon graph. The

graph and the lengths are given in Figure C.21.
In Figure C.22, we see one of the connected components of Γ̃1.
We observe that the length of each connected component of Γ̃1 is 4ε1 which coincides with

the length of the relative boundary components of Figure C.20 that come from the blowing up.
Therefore, we can pick an isometry from one connected component of Γ̃1 to one of the boundary
components of Figure C.20. We do so as indicated in Figure C.20 by the marked green arcs.
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ǫ1 − 2ǫ2

2ǫ2

Figure C.21: The upper part of the picture is Γ1
Γ2 . The lower part of the picture is Σ1

Γ2 . The three green
circles will correspond to Γ̃2 (when they are defined).

2ǫ2

ǫ1 − 2ǫ2

Figure C.22: We see one of the connected components of Γ̃1. The green part corresponds to the part of
Γ1

Γ2 that is in Γ̃2.

Now we describe Γ2. It is exactly the graph K3,3 where each edge is of length 2ε2/3. See
Figure C.23. On that picture we also observe its thickening and the result of cutting its thickening
along K3,3.
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2ǫ2/3

a1

a2

a3

a4

a5

a6

a1

a3a5

a2

a4

a6
a7

a8

a9

a7

a8

a9

a1

a2

a3

a4

a5

a6

a1

a3a5

a2

a4

a6
a7

a8

a9

a7

a8

a9

2ǫ2/3

ǫ2/3

Figure C.23: We see the graph Γ2 := K3,3 and its thickening. On the lower part of the figure we see the
three cylinders of Σ2

K3,3 . The labels on the edges indicate that two edges with the same label should be
glued by an orientation reversing isometry to recover K3,3. On the lower part of the picture, we see the
chosen isometries with the boundary components of Γ1

Γ2 .

We note that the length of each of the boundary components of Σ3
K3,3

that come from cutting,
has length 4ε2 which coincides with the lengths of the boundary components of Σ1

Γ2 contained in the
graph (see Figure C.21). So we can pick isometries that identify the three boundary components
with the three boundary components of Γ1

Γ2 . We do so as depicted in the lower part of figure
Figure C.23
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π/2− ǫ

2ǫ

p′

φΓ,0(p
′)

Dδ1 ◦ φΓ,0(p
′)

Figure C.24: Let p′ be one of the preimages by g̃Γ,1 of p. We see its image by the relative tête-à-tête
homeomorphism φΓ,0 and we also see its image after composing the relative tête-à-tête homeomorphism
with Dδ1 .

With this information we have constructed a filtered metric ribbon graph (see Figure C.26).

We observe (see Figure C.26) that Γ0,Γ1 and Γ2 are connected. Hence, the functions δ0, δ1
and δ2 take only one value each. We define them by

δ0 := π

δ1 := 2ε1
δ1 := 2ε2

(C.25)

It can be checked easily that with these values (Γ•, δ•) is a mixed tête-à-tête graph.

We can picture the construction of the mixed tête-à-tête homeomorphism. We pick a point p
with cp = 2 so that the corresponding mixed safe walk is formed by the concatenation of three safe
walks. Let p′ be one of the preimages of p by g̃Γ,1.

In Figure C.24, we see the action of the homeomorphism Dδ1 ◦ φΓ,0 on p′.

Finally, in figures Figure C.27 and Figure C.28 we see the two mixed safe walks starting at
a point p with cp = 2. One can easily check, using the metric put on the graph, that these are
actually the mixed safe walks and that they end at the same point.
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Figure C.26: We see the graph Γ. In red we see Γ \ Γ1. In blue we see Γ1 \ Γ2 and in green we see Γ2.
We observe that, since Γ2 is connected, so is Γ1, unlike Γ1

Γ2 that has 3 connected components.
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p

pγ1
pγ2

p̂

Figure C.27: We the see Σ with the embedded graph Γ. In orange we see the mixed safe walk γp. We
have denoted by p̂ the end of the mixed safe walk.
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p

pω1pω2

p̂

Figure C.28: We the see Σ with the embedded graph Γ. In orange we see the mixed safe walk ωp.
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Example C.29. Suppose we are given the bipartite complete graph Γ of type 4, 11 with the cyclic
order induced by placing 4 and 11 vertices in two horizontal parallel lines in the plane and taking
the joint of the two sets in that plane. Give each edge length π/2. This metric makes it into a
tête-à-tête graph as we already know. Let φΓ be a periodic representative of the mapping class
induced by the tête-à-tête structure.

π/2

φ4
Γ

φ11
Γ

Figure C.30: On the left we see the tête-à-tête graph K4,11. On the right we see a small neighborhood
of a vertex of valency 11 where φ4

Γ acts as the rotation r4/11 radians. Equivalently, for a vertex of valency
4, we see that φ11

Γ acts as the rotation r3/4.

Let’s find the associated invariants. One can easily check that the orbit graph is just a segment
joining the only two branch points so the orbit surface is a disk and hence g = 0 and r = 1.

The map p : Σ → ΣφΓ has two branch points that correspond to two Seifert pairs. Let r1 be
the branch point in which preimage lie the 4 points of valency 11. We choose any of those 4 points
and denote it p1, now φ4 acts as a rotation with rotation number 4/11 in a small disk around p1
. Hence, the associated normalized Seifert pair is (11, 8). Note that 8 · 4 ≡ −1 mod 11 and that
0 < 8 < 11. Equivalently for the other point we find that φ11

Γ is a rotation with rotation number
3/4 when restricted to a disk around any of the 11 vertices of valency 4. Hence, the corresponding
normalized Seifert pair is (4, 1).

Computing the continued fraction we find that 11
8 = [2, 2, 3, 2] and 4

1 = [4]. For computing the
number b we think of the surface resulting from extending the periodic automorphism to a disk
capping off the only boundary component of Σ. By a similar argument, since the rotation number
induced on the boundary is −1/44, this would lead to a new Seifert pair (44, 1). Since these are
normalized Seifert invariants, the new manifold is closed and admits a horizontal surface, we can
use Proposition 3.17 and compute the number b as −1/4− 8/11− 1/44 = −1.

So the plumbing diagram corresponding to the mapping torus of Σ by φΓ is the following.

−2 −2 −2−3

−4

−1−44

which, up to contracting the bamboo that ends in the arrowhead, coincides with the dual graph
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of the resolution of the singularity of x4 + y11 at 0.
Finally, we are going to compute the element that the surface Σ represents in the homology

group H1(ΣφΓ)⊕Z . First observe that since ΣφΓ is a disk, the group is isomorphic to 0⊕Z. This
tells us that the only possible choices of multisections in the bundle ΣφΓ × S1 are classified (up to
isotopy) by the elements (0, k) with k 6= 0. The element (0, k) corresponds to k parallel copies of
the disk ΣφΓ . In our case, there is only one such disk so the element is (0, 1).

Example C.31. Suppose we are given the following plumbing graph:

−2 −2

−2

−1

Figure C.32

We are indicated two of the invariants of the Seifert manifold: the genus of the base space
g = 0 and its number of boundary components r = 2. The base space B is therefore an annulus.

We compute the Seifert invariants by interpreting the weights on the two bamboos of the
plumbing graph as numbers describing continued fractions. We get [2, 2] = 3/2 and [2] = 2 so the
Seifert pairs are (3, 2) and (2, 1). So the corresponding Seifert fibering s : M → B has two special
fibers F1 (for the pair (2, 1) and F2 (for the pair (3, 2)). Using Lemma 3.7 we find that the Seifert
fiber corresponding to the pair (3, 2) has a tubular neighborhood diffeomorphic to the fibered solid
torus T1,3; this is because −2 · 1 ≡ 1 mod 3. Analogously, the fiber corresponding to the Seifert
pair (2, 1) has a tubular neighborhood diffeomorphic to the fibered solid torus T1,2.

Now we fix a model for our Seifert manifold. Take an annulus as in Figure C.33. Now we use
the kind of model explained in Figure 4.9; we choose a boundary component and we pick properly
embedded arcs (with their boundaries lying on the chosen boundary component) in such a way
that cutting along one of them cuts off a disk containing only one of the two images by s of the
special fibers; over those disks in M lie the two corresponding fibered solid tori. Let d be the point
lying under π(F1) and let a be the point lying under the fiber π(F2). We pick an embedded graph
which is a spine of B as in Figure C.33 below, that is, the graph is the union of: a circle whose
class generates the homology of the base space. We denote it by S; a segment joining a point c ∈ S
with the vertex d. We denote this segment by D and a segment joining a point b ∈ S with the
vertex a. We denote this segment by A. See Figure C.33.

We denote this graph by Λ̃.

abcd

D A

Figure C.33: This is the base space B of the Seifert fibering. In red we see Γ̃ which is formed by a
circle and two segments attached to it that end at the image by s of the special fibers. The dashed lines
represents the properly embedded arcs
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Now we consider M̂ which is diffeomorphic to B × S1 which is homotopically equivalent to
Γ̃ × S1. We denote the projection on B by ŝ : M̂ → B. The map π : M → M̂ satisfies that
ŝ ◦ π = s.

The piece of information missing from the input is the horizontal surface. Suppose we are
given the element (1, 2) ∈ H1(B;Z)⊕ Z with respect to the basis formed by the class of S. Then,
the intersection of the horizontal surface Ĥ ⊂ M̂ with the torus Ŝ := ŝ−1(S) is a curve of slope
1/2. We also have that ŝ−1(A) consists of two segments, as well as ŝ−1(D). See figure Figure C.34.

Figure C.34: This is M̂ together with the base space under it. Lying over the graph Γ̃ we can see the
graph Ĝ whose thickening is the horizontal surface Ĥ (the blue helicoidal ramp on the figure). Also we see
that lying over the circle of Γ̃ lies the closed curve in Γ̂ that is a curve of slope 1/2 in the torus ŝ−1(S1).

The horizontal surface that we are looking for is H := π−1(Ĥ) that is the thickening of π−1(Γ̂).
To know the topology of H and the action on it of the monodromy, we construct the ribbon graph
π−1(Γ̂). We observe that lcm(2, 3) = 6 so π−1(Ŝ) is the curve of slope 1/12 on the torus s−1(S).
We also have that s−1(a) = (π ◦ ŝ)−1(a) consists of 4 and s−1(A) consists of 12 segments separated
in groups giving valency 3 to each of the points in points. Equivalently s−1(d) consists of 6 vertices
and s−1(D) of 12 segments naturally separated by pairs. The fact that s−1(S) is a curve of slope
1/12, give us the combinatorics of the graph. Using notation of C.35, and the rotation numbers
associated to each of the two Seifert pairs, we find that the graph is that of Figure C.35.
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a1
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a4
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a9

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

x

φ(x)

y

φ(y)

Figure C.35: The graph π−1(Λ̂) in black. The letters with subindexes are interpreted like this: the vertex
ai is glued to the vertex bi and the vertex di is glued to the vertex di. In red we see a path from x to φ(x)
used to compute the rotation number of φ with respect to the outer boundary component; we observe that
the outer boundary component retracts to 72 edges (each edge is counted twice if the boundary component
retracts to both sides of the edge), and the red path covers 66 of these edges.

You can easily compute from the ribbon graph that the surface has 2 boundary components
and genus 7. Since it has only two boundary components, each of them is invariant by the action
of the monodromy induced by the orientation on the fibers.

We compute their rotation numbers as explained on Step 5 of the algorithms. We observe
that the ”outer” boundary component retracts to 72 edges where an edge is counted twice if
the boundary component retracts to both sides of it. We pick a point x and observe that the
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monodromy indicated by the orientation of the fibers takes it to the point immediately above it
φ(x). Now we consider a path ”turning right” starting at x and observe that it goes along 66 edges
before reaching φ(x). Hence, the rotation number of φ with respect to this boundary component
is 11/12. Similarly, we observe that the other boundary component retracts to 24 edges and by a
similar procedure we can check that φ also has a rotation number 11/12 with respect to this other
boundary component. See figure Figure C.35.

Following the construction in Theorem 7.18, we should put a metric on Ĝ so that the part
where the outer boundary component retracts has a length of π/11 and the same for the other
boundary component. But this is impossible given the combinatorics of the graph. That means
that this graph does not accept a tête-à-tête metric. However theorem Theorem 7.18 gives us a
procedure to find a graph admitting a tête-à-tête metric producing the given monodromy. In this
case, it is enough to consider the following graph.

Figure C.36: Graph Γ̃ that admits a tête-à-tête metric.

If we call this graph Γ̃ we see that that Γ := p−1(Γ̃) is the graph of Figure C.37. By declaring
that each of the two edges of the circle Γ̃ has length π/22, then Γ is a pure tête-à-tête graph
modeling the action of the monodromy on the horizontal surface H.
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â8

â9
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Figure C.37: The tête-à-tête graph Γ. The notation means that ai is glued to bi, âi to b̂i, ci to di and
ĉi to d̂i for all i = 1, . . . , 12.
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Example C.38. Let Σ be the surface of Figure C.39. Suppose it is embedded in R3 with its
boundary component being the unit circle in the xy-plane. Consider the rotation of π radians
around the z-axis and denote it by Rπ. By the symmetric embedding of the surface, it leaves the
surface invariant. Isotope the rotation so that it is the identity on z ≤ 0 and it has fractional Dehn
twist coefficient equal to 1/2. We denote the isotoped automorphism by T .

Ĝ(φ)G(φ)Σ

Σ0
1,1

Σ1
1,1Σ1

1,2

A1A2

A3

Figure C.39: On the left we see the surface Σ. On the right we see the corresponding graphs Ĝ(φ) and
G(φ) for the depicted canonical form.

More concretely, let T : R3 → R3 defined by

T (r, θ, z) :=

 (rei(θ+π), z) if z ≤ ε
(reθ+ z

ε π, z) if 0 ≤ z ≤ ε
id if z ≤ 0

(C.40)

With (r, θ) polar coordinates on the xy-plane and ε > 0 small.

Let Di be a full positive Dehn twist on the annuli Ai, k = 1, 2, 3 (See Figure C.39). We define
the automorphism

φ := D−1
3 ◦ D2 ◦ D−2

1 ◦ T |Σ.

The automorphism comes already in canonical form. We construct the corresponding Nielsen
graph Ĝ(φ) and we observe that the corresponding distance function D is not a filtering function
since there is 1 loop on Ĝ(φ). So we apply Remark 10.4 and we get the almost-canonical form and
graphs of figure Figure C.41.
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G(φ,Σ)

Σ

Σ0
1,1

Σ1
1,1Σ1

1,2 Σ2
1,1

Ĝ(φ,Σ)

Figure C.41: On the left we see the surface Σ. On the right we see the corresponding graphs Ĝ(φ) and
G(φ) for the depicted almost-canonical form. In red we see the core curves of the annuli in A.

Now there are 4 annuli in A in this almost-canonical form. The annuli, A1 and A2 are
exchanged by the monodromy, the Dehn twists D−2

1 and D2 indicate that the screw number of this
orbit is −1. And the annuli A3,1 and A3,2 that were originally contained in A3; these annuli are
also exchanged by the monodromy. We get that the screw number on this orbit is −1.

We start the construction process following Theorem 10.7. We construct a relative tête-à-tête
graph (Γ[0], B[0]) for φ|Σ0 : Σ0 → Σ0. We use [FPP17, Theorem 5.22] for this. In Figure C.42 we
can see this graph in blue.

π/18

π/3

π/3

π/18 π/18

π/9

π/72

π/72

π/72

Figure C.42: The relative tête-à-tête graph (Γ[0],B[0]) embedded in Σ0 ⊂ Σ. The lengths are indicated
on a few edges and the rest is obtained by symmetry of the graph. We can also see in red an invariant
relative spine for Σ1.

In the next step we construct relative metric ribbon graphs for Σ1. In this case Σ1 consist of
two connected surfaces that are exchanged. Each surface is a torus with two disks removed and
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one of the boundary components is glued to an annulus connecting it with Σ2. This graph will
correspond with Γ1

Γ2 in the final mixed tête-à-tête graph. In the notaton of the theorem we are
using, it is Γ[1]1. In Figure C.42 we can see these relative metric ribbon graphs in red. In this step
we also choose an invariant product structure on Σ1

Γ1

Now we proceed to find the parametrizations η1 and η2. We pick any parametrization η1 for
A1. On the right part of Figure C.43 we can see the two retraction lines of the parametrization
starting at the two vertices p and q of the corresponding boundary component in B[0]. On the left
part of that figure we see two annuli, the upper one shows the image of the two retraction lines by
φ, on the lower annulus we see the retraction lines that we choose according to Lemma 2.45.

A2

A1

A2

η2([0, 1]× {φ(p)})

η1([0, 1]× {p})p

φ(p)

φ(p)

q

φ(q)

φ(q)

φ

Figure C.43: The orbit of annuli A1 and A2. On the right part we see A1 with a chosen product structure
and on the left part we see two copies of A2, the lower one with the parametrization given by Lemma 2.45.

We concatenate the chosen retraction lines of the annuli (green in C.44) with the corresponding
retraction lines of the product structure in Σ1 (orange in the the picture).

The metric on the red part is chosen so that each of the two components of Γ̃1 has the same
length as the two relative components in B[0], that is equal to π/9. Since the screw number is −1
and there are two annuli in the orbit we get that δ1 is the constant function π/18.

Similarly to the construction of the graph (Γ[1],B[1]), we construct Γ[2] = Γ. We observe that
Σ2 is an annulus whose boundary components are permuted by φ. It is attached along an orbit of
annuli A3,1 and A3,2 to Σ2. It has total length equal to 4π/72 = π/18 Since this orbit of annuli
has screw number −1/2, we get that δ2 is the constant function π/144.
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π/18− ε

π/3

π/3

π/9− ε

A2

p

q

Figure C.44: The relative tête-à-tête graph (Γ[1],B[1]) embedded in Σ1 ⊂ Σ. The lengths are indicated.
The green lines correspond to retraction lines of the corresponding product structures η1 and η2 and the
orange lines correspond to retraction lines of the product structures chosen for the cylinders Σ2

Γ[1]1

π/18− ε

π/3

π/3

π/9− ε

A2

p

q

Figure C.45: The final mixed tête-à-tête graph (Γ•, δ•). In green we have Γ2; in red we have Γ1 \Γ2 and
in blue Γ \ Γ1.
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Example C.46. In this example, we take the mixed tête-à-tête graph (Γ•, δ•) described in Exam-
ple C.38 and compute the corresponding plumbing graph and associated element of cohomology
describing the horizontal surface given by the thickening Σ of Γ. We will use notation from the
cited example.

First we observe that since the depth of the graph is 2, and on each level there is only one
orbit of surfaces, the plumbing manifold Y will have 3 Seifert pieces and hence 3 nodes. These
correspond exactly to Σ0,Σ1 and Σ2.

Now we look for the combinatorial information to get the plumbing graph. We observe the
following:

(1) The piece corresponding to Σ0 has three fixed points with rotation number 1/2. The genus
of the orbit space is 0 and the automorphism has periodic order 2 restricted to it.

(2) The boundary has fractional Dehn twist coefficient equal to 1/2.

(3) The two different orbit of annuli have screw number equal to −1.

(4) The Seifert piece corresponding to Σ1\Σ2 has no points with non-trivial isotropy. The genus
of the orbit space is 1 and the automorphism has periodic order 2 restricted to it.

(5) The Seifert piece corresponding to Σ2 has two fixed points with rotation number 1/2. The
genus of the orbit space is 0 and the automorphism has periodic order 2 restricted to it.

By using 12.1,12.3 and 12.5 we get the decoration of the plumbing graph. For example blue
node has multiplicty 2, it has three arms coming out of it with only one vertex each with Euler
weight −2 (corresponding to the continued fraction of 1/2). Since they are fixed points, they have
multiplicity weight (1). There is an arrowhead coming out of the blue node corresponding to the
only boundary component. The fractional Dehn twist at this boundary component is 1/2 so by
using 12.3 we get that the arm ending in an arrowhead has no vertices. Similarly we get the rest
of the decoration of the graph.

Since the graph is contractible, we find that the homology of the Waldhausen graphH1(G;Z) =
0 does not contribute to the classification of horizontal fibrations. All the information that’s left
to determine the horizontal fibration is the number of connected components on each node which
is: one connected component on Σ0, two on Σ1 and one on Σ2. In the next example, we analyze
the only other possibility of pseudo-periodic automorphism whose mapping torus gives the same
plumbed manifold and Waldhausen graph.
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(2)

Figure C.47: The plumbing graph, the colors indicate which Seifert piece they represent according to
C.47. The second figure represents the plumbing graph after plumbing calculus.

Example C.48. On this example we show an application of the algorithm that takes a 3-
dimensional graph manifold with a Waldhausen link and a horizontal fibration as input and returns
a mixed tête-à-tête graph as output.

We use the plumbing graph of the previous example Figure C.47. We consider the same system
of multiplicities. The arrowhead on the blue node determines that Σ0 is connected. On the red
node, we have exactly two choices since the gcd of its multiplicity and its neighbours multiplicities
is 2. The previous example corresponds to the horizontal fibration with two connected components
forming Σ1.

In this example, we construct the mixed tête-à-tête graph corresponding to the horizontal open
book whose periodic piece corresponding to the red node has one connected component instead of
two.

First we observe that since there are no arms coming out of the node, there are no points with
non-trivial isotropy. The multiplicity on the node indicates that the periodic automorphism has
order 2. Hence, there is an unramified cover of degree 2 from the piece in the horizontal surface
to the orbit space, which is a surface with 2 boundary components and genus 1. Hence, the piece
in the horizontal surface has 4 boundary components and genus 1. Also, since there are no arms
coming out of that vertex, we get that there are no points with non-trivial isotropy.

In Figure C.49 we see the surface and the periodic automorphism correspnding with the above
information.

The surfaces Σ0 and Σ2 are exactly the same. Hence, by following again Theorem 10.7 and
figure Figure C.49 we get the following mixed tête-à-tête graph (see Figure C.50) where the lengths
of the edges are indicated in the figure.

Finally, the δ functions are δ0 = π, δ1 = π/18 and δ2 = π/198.

Example C.51. Fix 0 < ε < π/4 rational multiple of π. First consider two non-isomorphic metric
ribbon graphs with homeomorphic thickenings as in Figure C.52.

Consider the following relative metric ribbon graph with the lengths of each edge indicated in
the picture Figure C.53 and the cyclic orientation at each vertex induced by the given projection
on the plane. The relative boundaries are the four circles. The markings on the circles mean that
they should be glued according to Figure C.52, that is, by taking each of the arcs between two
contiguous red vertices (resp. blue vertices) and identifying them with opposite arcs in the same
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Σ1

p

π

Figure C.49: On the left we see the surface Σ1 with the chosen invariant spine by the π-rotation around
the vertical axis. On the right we see the orbit space with a spine whose preimage by the cover p gives the
invariant spine.

circle by an orientation reversing isometry. When we glue the four circles we get a metric ribbon
graph. We denote by Γ1 the union of the image by the gluing of the four circles. The graph is
then filtered by

Γ = Γ0 ⊃ Γ1

Denote by g1 : ΓΓ1 → Γ be the gluing function. Now we proceed to find possible δ0 numbers.
A priori, the possible values are those that make (ΓΓ1 , Γ̃1) a relative tête-à-tête graph which by
Lemma A.5 (3) are

δ0(Γ) = nπΓΓ1

for n ∈ N.
Let K2,4 be the complete bipartite graph of type 2, 4 where each edge is set to be of length

π/2. We know that this makes it a tête-à-tête graph. Now observe that (ΓΓ1 , Γ̃1) is Blv(K2,4, ε)
(recall Definition 6.13) where v is one of the 4 vertices of valency 2 in K2,4. This tells us that
πΓΓ1 = π. We note that the homeomorphism induced on Blv(K2,4, ε) by safe walks of length π has
order lcm(2, 4) = 4.

Enumerate the circles in the picture from right to left by {1, 2, 3, 4} and denote by λ0,n the
permutation induced by setting δ0(Γ) = nπ. We see that

λ0,n =


(1)(2)(3)(4) if n ≡ 0 mod 4
(1 2 3 4) if n ≡ 1 mod 4
(1 3)(2 4) if n ≡ 2 mod 4
(1 4 3 2) if n ≡ 3 mod 4

Where the notation (a1 a2 . . . ak) indicates λ0,n(ai) = ai+1 and λ0,n(ak) = a1. And the
permutations are always written as product of disjoint cycles.

Let Γ1
i := g1(Γ̃1

i ). The graphs Γ1
1 and Γ1

3 are isomorphic, and Γ1
2 and Γ1

4 are isomorphic and
there are no more isomorphism classes in Γ1. Therefore, by Proposition A.22, we can exclude the
cases when n ≡ 1 mod 4 and n ≡ 3 mod 4. The other two are admissible permutations.

Case 1. Suppose n ≡ 0 mod 4 and hence λ0,n = (1)(2)(3)(4) = id. We look at the formula
eq. (A.23) specialized at i = 1 and observe that Γ2 is empty in this case since the filtration has
depth 1. So the possible values of δ1 in each connected component of Γ1 are

δ1|Γ1
j

= τ(φΓ,0|Γ̃1
j

,Γ1
j ) +mjπΓ1

j
(C.54)
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π/18− ε

π/3

π/3

π/9− ε

A2

p

q

ε

π/99

π/99

Figure C.50: The final mixed tête-à-tête graph Γ. Each red edge has length π/99, the green circle also
has length π/99, the for blue edges that go from Σ0 to Σ1 have length ε. The rest of the edges is the same
as in the previous example.

for j = 1, 2, 3, 4 and mj ∈ N.
Since the relative tête-à-tête map induced by the graph K2,4 has order 4 we see that in all

these cases the map induced by φΓ,0 : ΣΓ1 → ΣΓ1 on Γ̃1 is the identity. So φΓ,0|Γ̃1
j

= id, we have
that

τ(φΓ,0|Γ̃1
j

,Γ1
j ) = 0

for all j = 1, 2, 3, 4.
We compute πΓ1

1
= πΓ1

3
= ε and πΓ1

2
= πΓ1

4
= 2ε/3. This is clear by observing the Figure C.52.

So, substituting in eq. (C.54) we find that

δ1|Γ1
j

=


m1ε if j = 1
m2

2ε
3 if j = 2

m3ε if j = 3
m4

2ε
3 if j = 4

are valid values for the δ1 function for all m1,m2,m3,m4 ∈ N ∪ {0}. And by Proposition A.22
these are all.

Case 2. Suppose now that n ≡ 2 mod 4 and hence λ0,n = (13)(24). Now the permutation is
not the identity. We have
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2ǫ/3

ǫ

Figure C.52: We see two metric ribbon graphs and their corresponding thickenings. On the lower part
of the figure we can see ΣΓ1

1
and ΣΓ1

2
together with the induced markings on Γ̃1

1 and Γ̃1
2.

2ǫ/3

ǫ

π/2− ǫΓ0

Γ1

Γ̃1
1Γ̃1

2Γ̃1
3Γ̃1

4

2ǫ/9 ǫ/3

Figure C.53: We see a regular filtered metric ribbon graph of depth 1. The graph Γ0 is the whole graph
and the graph Γ1 consits of 4 connected components that are the closings of the four circles in the picture.
Actually, on the figure we are seeing a planar projection of ΓΓ1 .

δ1|Γ1
j

= τ(φΓ,0|Γ̃1
λ
−1
0,n(j)

,Γ1
j ) +mπΓ1

j
(C.55)

We observe that now φΓ,0 is different from Case 1.. In these cases, φΓ,0|ΓΓ1 corresponds to
φ2

(ΓΓ1 ,Γ̃1)
. We compute in the corresponding tau numbers
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τ(φΓ,0|Γ̃1
λ
−1
0,n(j)

,Γ1
j ) =


2ε/3 if j = 1
2ε/9 if j = 2
ε/3 if j = 3
4ε/3 if j = 4

A handy recipe for computing the above numbers is the following: pick a blue vertex in Γ̃1
1.

Follow a boundary safe walk of length 2π; the endpoint of this boundary safe walk is in Γ̃1
3. Then

τ(φΓ,0|Γ̃1
λ
−1
0,n(j)

,Γ1
j ) is the length of the arc from this endpoint to the next blue vertex in Γ̃1

3 (in the

direction indicated by the boundary safe walk). Do similar for each connected component in Γ1.
So, substituting in eq. (C.55) we find that

δ1|Γ1
j

=


ε/3 +m1ε if j = 1
4ε/3 +m22ε/3 if j = 2
2ε/3 +m3ε if j = 3
2ε/9 +m42ε/3 if j = 4

are valid values for the δ1 function for all m1,m2,m3,m4 ∈ N ∪ {0}.
And by Proposition A.22 these are all the possible values that δ0 and δ1 may take in order to

make (Γ•, δ•) a mixed tête-à-tête graph.
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(Γ, A) relative ribbonn graph, 5
(Γ•, A•) filtered relative metric ribbon graph,

69
(p, q)-torus, 19
I interval, 6
Γ graph, 3
Λ-blow up, 111
S1 circle, 4
Σ surface, thickening, 4
ΣΓ cut Σ along Γ, 6
Γ̃i conected component of g−1

Γ (Γ), 6
Dδi boundary Dehn twist induced by δ func-

tions, 73
δ functions, 69
ε-blow up, 51
σΓ tête-à-tête action on Γ, 51
τ number, 105
Σ̃i cylinder component of Σ \ Γ, 6
e(v) edges of Γ, 3
gΓ gluing map, 6
v(Γ) vertices of Γ, 3

Alexander trick, 10
almost-canonical form, 15, 79
amphidrome, 16

annuli, 16
curve, 16, 80

automorphism, 8

bamboo, 23
boundary free isotopy, 7
boundary Dehn twist, 18

canonical form, 15
central fiber, 19
continued fraction, 25

Dehn twist, 11
boundary, 73
left-handed, 11
negative, 11
positive, 11
right-handed, 11, 44

depth, 69

Ehresmann connection, 42

fiber, 20
fibered tori, 19
filtering function, 80
fractional Dehn twist coefficient, 11, 40, 77
frame, 22
framing, 22
freely isotopic, 7
freely periodic, 12, 53

Galois branched covering, 9
gluing map, 53
gluing map, 6, 73, 112
graph, 3
graph manifold, 22, 23, 29, 93

horizontal fibrations, 34
horizontal open book, 44, 93
horizontal open books, 34
horizontal surface, 29, 89, 91
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classification of, 31, 33
well-embedded, 30

linear twist, 16
longitude, 20

mapping class group, 7
boundary fixed, 8
boundary free, 7

meridian, 20
Milnor fiber, 39, 41, 118
Milnor fibration, 41
Milnor-Lê fibration, 42
mixed tête-à-tête graph, 69, 70

relative, 70
mixed tête-à-tête property, 70
mixed tête-à-tête twist, 73
monodromy, 41
multiplicity, 19, 96

Newton pair, 118
Nielsen’s Realization Theorem, 9
Nielsen-Thurston classification, 8

orbifold Euler number, 21

periodic automorphism, 9
periodic piece, 8
plumbing graph, 22, 35, 89, 93
product structure, 6
pseudo-Anosov, 8
pseudo-periodic automorphism, 9, 15, 35, 75,

79, 93
Puiseux

characteristic pair, 43
expansion, 43
pair, 43
series, 43

Puiseux pair, 118

regular thickening, 3
regular covering map, 9
regular retract, 3
relative ribbon graph, 5

metric, 47
ribbon graph, 4

filtered, 69, 103, 111
metric, 47
with boundary, 64

right-veering, 57

rotation number, 11, 104

safe walk
relative, 48

safe walk, 47
`-safe walk, 48
boundary, 48
boundary mixed, 70
constant, 54
general, 64
mixed, 69
signed, 53

screw number, 17, 38, 76, 79, 95
section, 20
Seifert pair, 21
Seifert fibering, 21, 29, 91

handy model, 32
Seifert invariants, 21
Seifert manifold, 19, 20, 89
singular point, 41
singularity, 41

irreducible, 118
isolated, 41, 44, 118
link, 42
normal surface, 44
plane curve, 43, 118
surface, 44

special fiber, 19
special twist, 17
spine, 3

tête-à-tête graph, 47, 69, 89
general, 63
mixed, 93, 103
relative, 69, 74
signed, 53

tête-à-tête property, 49
`-tête-à-tête property, 49
mixed, 70
relative, 49
signed, 54

tête-à-tête twist, 53
mixed, 73, 75

thickening, 4, 5
typical fiber, 19

Waldhausen graph, 27, 35
Waldhausen link, 27, 44, 93
walk, 47
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